Invariant subspaces on Riemann surfaces of Parreau-Widom type

Author:

Hayashi Mikihiro

Abstract

In this paper we generalize Beurling’s invariant subspace theorem to the Hardy classes on a Riemann surface with infinite handles. The problem is to classify all closed ( weak \text {weak}^{\ast } closed, if p = p = \infty ) H ( d χ ) {H^\infty }(d\chi ) -submodules, say m \mathfrak {m} , of L p ( d χ ) {L^p}(d\chi ) , 1 p 1 \leqslant p \leqslant \infty , where d χ d\chi is the harmonic measure on the Martin boundary of a Riemann surface R R , and H ( d χ ) {H^\infty }(d\chi ) is the set of boundary functions of all bounded analytic functions on R R . Our main result is stated roughly as follows. Let R R be of Parreau-Widom type, that is, the space H ( R , γ ) {H^\infty }(R,\gamma ) of bounded analytic sections contains a nonzero element for every complex flat line bundle γ π ( R ) \gamma \in \pi {(R)^{\ast }} . We may assume, without loss of generality, that the Green’s function of R R vanishes at the infinity. Set m ( γ ) = sup { | f ( O ) | : f H ( R , γ ) , | f | 1 } {m^\infty }(\gamma ) = \sup \{ |f({\mathbf {O}})|:f \in {H^\infty }(R,\gamma ),|f| \leqslant 1\} for a fixed point O {\mathbf {O}} of R R . Then, a necessary and sufficient condition in order that every such an m \mathfrak {m} takes either the form m = C E L p ( d χ ) \mathfrak {m} = {C_E}{L^p}(d\chi ) , where C E {C_E} is the characteristic function of a set E E , or the form m = q H p ( d χ , γ ) \mathfrak {m} = q{H^p}(d\chi ,\gamma ) , where | q | = 1 |q| = 1 a.e. and γ \gamma is some element of π ( R ) \pi {(R)^{\ast }} is that m ( γ ) {m^\infty }(\gamma ) is continuous for the variable γ π ( R ) \gamma \in \pi {(R)^{\ast }} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. On two problems concerning linear transformations in Hilbert space;Beurling, Arne;Acta Math.,1948

2. Espaces et lignes de Green;Brelot, M.;Ann. Inst. Fourier (Grenoble),1951

3. Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 32;Constantinescu, Corneliu,1963

4. Pure and Applied Mathematics, Vol. 38;Duren, Peter L.,1970

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Widom Factors and Szegő–Widom Asymptotics, a Review;Toeplitz Operators and Random Matrices;2022

2. Asymptotics of Chebyshev polynomials, II: DCT subsets of R;Duke Mathematical Journal;2019-02-01

3. An example of a domain of parreau-widom type;Complex Variables, Theory and Application: An International Journal;1986-10

4. On periods of certain Eichler integrals for Kleinian groups;Hiroshima Mathematical Journal;1985-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3