A mapping theorem for logarithmic and integration-by-parts operators

Author:

Appling William D. L.

Abstract

Suppose U is a set, F is a field of subsets of U, p A B {\mathfrak {p}_{AB}} is the set of all bounded real-valued finitely additive functions defined on F, and W is a collection of functions from F into exp ( R ) \exp ({\mathbf {R}}) , closed under multiplication, each element of which has range union bounded and bounded away from 0. Let P \mathcal {P} denote the set to which T belongs iff T is a function from W into p A B {\mathfrak {p}_{AB}} such that if each of α \alpha and β \beta is in W and V is in F, then the following integrals exist and the following “integration-by-parts” equation holds: \[ V α ( I ) T ( β ) ( I ) + V β ( I ) T ( α ) ( I ) = T ( α β ) ( V ) . \int _V \alpha (I)T(\beta )(I) + \int _V {\beta (I)T(\alpha )(I) = T(\alpha \beta )(V).} \] Let L \mathfrak {L} denote the set to which S belongs iff S is a function from W into p A B {\mathfrak {p}_{AB}} such that if each of α \alpha and β \beta is in W, then the integral U α ( I ) S ( β ) ( I ) \smallint _U {\alpha (I)S(\beta )(I)} exists and the following “logarithmic” equation holds: S ( α β ) = S ( α ) + S ( β ) S(\alpha \beta ) = S(\alpha ) + S(\beta ) . It is shown that { ( T , S ) : T in P , S = { ( α , ( 1 / α ) T ( α ) ) : α in W } } \{ (T,S):T\;{\text {in}}\;\mathcal {P},\;S = \{ (\alpha ,\;\smallint {(1/\alpha )T(\alpha )):\;\alpha \;{\text {in}}\;W\} \} } is a one-one mapping from P \mathcal {P} onto L \mathfrak {L} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference3 articles.

1. Interval functions and Hellinger integral;Appling, William D. L.;Duke Math. J.,1962

2. Set functions, finite additivity and distribution functions;Appling, William D. L.;Ann. Mat. Pura Appl. (4),1972

3. Untersuchungen über denIntegralbegriff;Kolmogoroff, A.;Math. Ann.,1930

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3