On the computational complexity of determining the solvability or unsolvability of the equation 𝑋²-𝐷𝑌²=-1

Author:

Lagarias J. C.

Abstract

The problem of characterizing those D for which the Diophantine equation X 2 D Y 2 = 1 {X^2}\, - \,D{Y^2}\, = \, - \,1 is solvable has been studied for two hundred years. This paper considers this problem from the viewpoint of determining the computational complexity of recognizing such D. For a given D, one can decide the solvability or unsolvability of X 2 D Y 2 = 1 {X^2}\, - \,D{Y^2}\, = \, - \,1 using the ordinary continued fraction expansion of D \sqrt D , but for certain D this requires more than 1 3 D ( log D ) 1 \tfrac {1}{3}\,\sqrt D \,{(\log \,D)^{ - \,1}} computational operations. This paper presents a new algorithm for answering this question and proves that this algorithm always runs to completion in O ( D 1 / 4 + ε ) O({D^{1/4\, + \,\varepsilon }}) bit operations. If the input to this algorithm includes a complete prime factorization of D and a quadratic nonresidue n i {n_i} for each prime p i {p_i} dividing D, then this algorithm is guaranteed to run to completion in O ( ( log D ) 5 ( log log D ) ( log log log D ) ) O({(\log \,D)^5}\,(\log \,\log \,D)(\log \,\log \,\log \,D)) bit operations. This algorithm is based on an algorithm that finds a basis of forms for the 2-Sylow subgroup of the class group of binary quadratic forms of determinant D.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference41 articles.

1. Diophantine complexity;Adleman, Leonard,1976

2. \bysame, Reducibility, randomness and intractability, (Proc. 9th Annual ACM Symposium on Theory of Computing), J. Assoc. Comput. Mach. (1977), 151-163.

3. The least quadratic non residue;Ankeny, N. C.;Ann. of Math. (2),1952

4. Zur Berechnung der 2-Klassenzahl der quadratischen Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern;Bauer, Helmut;J. Reine Angew. Math.,1971

5. The distribution of quadratic residues and non-residues;Burgess, D. A.;Mathematika,1957

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3