An asymptotic universal focal decomposition for non-isochronous potentials

Author:

de Carvalho C.,Peixoto M.,Pinheiro D.,Pinto A.

Abstract

Galileo, in the seventeenth century, observed that the small oscillations of a pendulum seem to have constant period. In fact, the Taylor expansion of the period map of the pendulum is constant up to second order in the initial angular velocity around the stable equilibrium. It is well known that, for small oscillations of the pendulum and small intervals of time, the dynamics of the pendulum can be approximated by the dynamics of the harmonic oscillator. We study the dynamics of a family of mechanical systems that includes the pendulum at small neighbourhoods of the equilibrium but after long intervals of time so that the second order term of the period map can no longer be neglected. We analyze such dynamical behaviour through a renormalization scheme acting on the dynamics of this family of mechanical systems. The main theorem states that the asymptotic limit of this renormalization scheme is universal: it is the same for all the elements in the considered class of mechanical systems. As a consequence, we obtain a universal asymptotic focal decomposition for this family of mechanical systems. This paper is intended to be the first in a series of articles aiming at a semiclassical quantization of systems of the pendulum type as a natural application of the focal decomposition associated to the two-point boundary value problem.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference71 articles.

1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover Publications (New York), 1965.

2. Dual variational methods in critical point theory and applications;Ambrosetti, Antonio;J. Functional Analysis,1973

3. Graduate Texts in Mathematics;Arnol′d, V. I.,1989

4. M. V. Berry, Tsunami asymptotics, New J. Phys. 7 (2005), 129.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3