Dirichlet and Neumann problems for planar domains with parameter

Author:

Bertrand Florian,Gong Xianghong

Abstract

Let Γ ( , λ ) \Gamma (\cdot ,\lambda ) be smooth, i.e.  C \mathcal C^\infty , embeddings from Ω ¯ \overline {\Omega } onto Ω λ ¯ \overline {\Omega ^{\lambda }} , where Ω \Omega and Ω λ \Omega ^\lambda are bounded domains with smooth boundary in the complex plane and λ \lambda varies in I = [ 0 , 1 ] I=[0,1] . Suppose that Γ \Gamma is smooth on Ω ¯ × I \overline \Omega \times I and f f is a smooth function on Ω × I \partial \Omega \times I . Let u ( , λ ) u(\cdot ,\lambda ) be the harmonic functions on Ω λ \Omega ^\lambda with boundary values f ( , λ ) f(\cdot ,\lambda ) . We show that u ( Γ ( z , λ ) , λ ) u(\Gamma (z,\lambda ),\lambda ) is smooth on Ω ¯ × I \overline \Omega \times I . Our main result is proved for suitable Hölder spaces for the Dirichlet and Neumann problems with parameter. By observing that the regularity of solutions of the two problems with parameter is not local, we show the existence of smooth embeddings Γ ( , λ ) \Gamma (\cdot ,\lambda ) from D ¯ \overline {\mathbb D} , the closure of the unit disc, onto Ω λ ¯ \overline {\Omega ^\lambda } such that Γ \Gamma is smooth on D ¯ × I \overline {\mathbb D}\times I and real analytic at ( 1 , 0 ) D ¯ × I (\sqrt {-1},0)\in \overline {\mathbb D}\times I , but for every family of Riemann mappings R ( , λ ) R(\cdot ,\lambda ) from Ω λ ¯ \overline {\Omega ^\lambda } onto D ¯ \overline {\mathbb D} , the function R ( Γ ( z , λ ) , λ ) R(\Gamma (z,\lambda ),\lambda ) is not real analytic at ( 1 , 0 ) D ¯ × I (\sqrt {-1},0)\in \overline {\mathbb D}\times I .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. L. Bers, Riemann Surfaces (mimeographed lecture notes), New York University (1957-1958).

2. F. Bertrand, X. Gong and J.-P. Rosay, Common boundary values of holomorphic functions for two-sided complex structures, submitted.

3. Classics in Mathematics;Gilbarg, David,2001

4. L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Springer-Verlag, Berlin, 1990.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oblique derivative boundary value problems on families of planar domains;Bulletin des Sciences Mathématiques;2023-03

2. Smooth Equivalence of Deformations of Domains in Complex Euclidean Spaces;International Mathematics Research Notices;2018-07-31

3. The $$\overline{\partial }$$ ∂ ¯ -equation on variable strictly pseudoconvex domains;Mathematische Zeitschrift;2017-12-07

4. Tests for complete K-spectral sets;Journal of Functional Analysis;2017-08

5. The $$L^p$$ L p CR Hartogs separate analyticity theorem for convex domains;Mathematische Zeitschrift;2017-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3