Detecting surface bundles in finite covers of hyperbolic closed 3-manifolds

Author:

Renard Claire

Abstract

The main theorem of this article provides sufficient conditions for a degree d d finite cover M M’ of a hyperbolic 3-manifold M M to be a surface bundle. Let F F be an embedded, closed and orientable surface of genus g g , close to a minimal surface in the cover M M’ , splitting M M’ into a disjoint union of q q handlebodies and compression bodies. We show that there exists a fiber in the complement of F F provided that d d , q q and g g satisfy some inequality involving an explicit constant k k depending only on the volume and the injectivity radius of M M . In particular, this theorem applies to a Heegaard splitting of a finite covering M M’ , giving an explicit lower bound for the genus of a strongly irreducible Heegaard splitting of M M’ . Applying the main theorem to the setting of a circular decomposition associated to a non-trivial homology class of M M gives sufficient conditions for this homology class to correspond to a fibration over the circle. Similar methods also lead to a sufficient condition for an incompressible embedded surface in M M to be a fiber.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. Cobordism of automorphisms of surfaces;Bonahon, Francis;Ann. Sci. \'{E}cole Norm. Sup. (4),1983

2. Large embedded balls and Heegaard genus in negative curvature;Bachman, David;Algebr. Geom. Topol.,2004

3. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Bridson, Martin R.,1999

4. Manifolds of negative curvature;Bishop, R. L.;Trans. Amer. Math. Soc.,1969

5. Degree one maps between small 3-manifolds and Heegaard genus;Boileau, Michel;Algebr. Geom. Topol.,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epimorphisms of 3-manifold groups;The Quarterly Journal of Mathematics;2018-03-02

2. Morse area and Scharlemann–Thompson width for hyperbolic 3-manifolds;Pacific Journal of Mathematics;2016-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3