Asymptotic equipartition of energy for differential equations in Hilbert space

Author:

Goldstein Jerome A.,Sandefur James T.

Abstract

Of concern are second order differential equations of the form ( d / d t i f 1 ( A ) ) ( d / d t i f 2 ( A ) ) u = 0 (d/dt - i{f_1}(A))(d/dt - i{f_2}(A))u = 0 . Here A is a selfadjoint operator and f 1 , f 2 {f_1},{f_2} are real-valued Borel functions on the spectrum of A. The Cauchy problem for this equation is governed by a certain one parameter group of unitary operators. This group allows one to define the energy of a solution; this energy depends on the initial data but not on the time t. The energy is broken into two parts, kinetic energy K ( t ) K(t) and potential energy P ( t ) P(t) , and conditions on A, f 1 , f 2 {f_1},{f_2} are given to insure asymptotic equipartition of energy: lim t ± K ( t ) = lim t ± P ( t ) {\lim _{t \to \pm \infty }}K(t) = {\lim _{t \to \pm \infty }}P(t) for all choices of initial data. These results generalize the corresponding results of Goldstein for the abstract wave equation d 2 u / d t 2 + A 2 u = 0 {d^2}u/d{t^2} + {A^2}u = 0 . (In this case, f 1 ( λ ) λ , f 2 ( λ ) λ {f_1}(\lambda ) \equiv \lambda ,{f_2}(\lambda ) \equiv - \lambda .)

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference14 articles.

1. Energy bounds and virial theorems for abstract wave equations;Bobisud, L. E.;Pacific J. Math.,1973

2. On the asymptotic behavior of solutions of the wave equations;Brodsky, A. R.;Proc. Amer. Math. Soc.,1967

3. Equipartition of energy in wave motion;Duffin, R. J.;J. Math. Anal. Appl.,1970

4. Symmetric hyperbolic linear differential equations;Friedrichs, K. O.;Comm. Pure Appl. Math.,1954

5. On the asymptotic behavior of nonlinear wave equations;Glassey, Robert T.;Trans. Amer. Math. Soc.,1973

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behavior of energies in strain gradient thermoelasticity of bodies with microtemperatures;Continuum Mechanics and Thermodynamics;2020-08-09

2. Nonsimple material problems addressed by the Lagrange’s identity;Boundary Value Problems;2013-05-20

3. Abstract wave equations and associated Dirac-type operators;Annali di Matematica Pura ed Applicata;2011-04-10

4. Asymptotic partition of energy in linear generalized thermoelasticity;ZAMP Journal of Applied Mathematics and Physics;1987-09

5. On asymptotic equipartition of energy;Journal of Differential Equations;1987-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3