Euler-Poincaré characteristic and higher order sectional curvature. I

Author:

Hsiung Chuan-Chih,Shiskowski Kenneth Michael

Abstract

The following long-standing conjecture of H. Hopf is well known. Let M M be a compact orientable Riemannian manifold of even dimension n 2 n \geqslant 2 . If M M has nonnegative sectional curvature, then the Euler-Poincaré characteristic χ ( M ) \chi (M) is nonnegative. If M M has nonpositive sectional curvature, then χ ( M ) \chi (M) is nonnegative or nonpositive according as n 0 n \equiv 0 or 2 mod 4 2\bmod 4 . This conjecture for n = 4 n = 4 was proved first by J. W. Milnor and then by S. S. Chern by a different method. The main object of this paper is to prove this conjecture for a general n n under an extra condition on higher order sectional curvature, which holds automatically for n = 4 n = 4 . Similar results are obtained for Kähler manifolds by using holomorphic sectional curvature, and F. Schur’s theorem about the constancy of sectional curvature on a Riemannian manifold is extended.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. Some implications of the generalized Gauss-Bonnet theorem;Bishop, R. L.;Trans. Amer. Math. Soc.,1964

2. On the second cohomology group of a Kaehler manifold of positive curvature;Bishop, R. L.;Proc. Amer. Math. Soc.,1965

3. The positivity of the Chern classes of an ample vector bundle;Bloch, Spencer;Invent. Math.,1971

4. Curvature operators: pinching estimates and geometric examples;Bourguignon, Jean-Pierre;Ann. Sci. \'{E}cole Norm. Sup. (4),1978

5. On curvature and characteristic classes of a Riemann manifold;Chern, Shiing-shen;Abh. Math. Sem. Univ. Hamburg,1955

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3