Exceptional boundary sets for solutions of parabolic partial differential inequalities

Author:

Hile G. N.,Yeh R. Z.

Abstract

Let M \mathcal {M} be a second order, linear, parabolic partial differential operator with coefficients defined in a domain D = Ω × ( 0 , T ) \mathcal {D} = \Omega \times (0,\,T) in R n × R {{\mathbf {R}}^n} \times {\mathbf {R}} , with Ω \Omega a domain in R n {{\mathbf {R}}^n} . Let u u be a suitably regular real function in D \mathcal {D} such that u u is bounded below and M u \mathcal {M}u is bounded above in D \mathcal {D} . If u 0 u \geqslant 0 on Ω × { 0 } \Omega \times \{ 0\} except on a set Γ × { 0 } \Gamma \times \{ 0\} , with Γ \Gamma a subset of Ω \Omega of suitably restricted Hausdorff dimension, then necessarily u 0 u \geqslant 0 also on Γ × { 0 } \Gamma \times \{ 0\} . The allowable Hausdorff dimension of Γ \Gamma depends on the coefficients of M \mathcal {M} . For example, if M \mathcal {M} is the heat operator Δ / t \Delta - \partial /\partial t , the Hausdorff dimension of Γ \Gamma needs to be smaller than the number of space dimensions n n . Analogous results are valid for exceptional boundary sets on the lateral boundary, Ω × ( 0 , T ) \partial \Omega \times (0,\,T) , of D \mathcal {D} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. Behavior of solutions of elliptic differential inequalities near a point of discontinuous boundary data;Bear, H. S.;Comm. Partial Differential Equations,1983

2. Growth and decay properties of solutions of second order elliptic equations;Fife, Paul C.;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3),1966

3. On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order;Friedman, Avner;Pacific J. Math.,1957

4. The Phragmén-Lindelöf theorem for elliptic partial differential equations;Gilbarg, David;J. Rational Mech. Anal.,1952

5. Zum Phragmén-Lindelöfschen Prinzip bei partiellen Differentialgleichungen;Habetha, Klaus;Arch. Math. (Basel),1964

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3