Decidability and invariant classes for degree structures

Author:

Lerman Manuel,Shore Richard A.

Abstract

We present a decision procedure for the \forall \exists -theory of D [ 0 , 0 ] \mathcal {D}[{\mathbf {0}},\,{\mathbf {0}}’ ] , the Turing degrees below 0 {\mathbf {0}}’ . The two main ingredients are a new extension of embeddings result and a strengthening of the initial segments results below 0 {\mathbf {0}}’ of [Le1]. First, given any finite subuppersemilattice U U of D [ 0 , 0 ] \mathcal {D}[{\mathbf {0}},\,{\mathbf {0}}’ ] with top element 0 {\mathbf {0}}’ and an isomorphism type V V of a poset extending U U consistently with its structure as an usl such that V V and U U have the same top element and V V is an end extension of U { 0 } U - \{ {\mathbf {0}}’ \} , we construct an extension of U U inside D [ 0 , 0 ] \mathcal {D}[{\mathbf {0}},\,{\mathbf {0}}’ ] isomorphic to V V . Second, we obtain an initial segment W W of D [ 0 , 0 ] \mathcal {D}[{\mathbf {0}},\,{\mathbf {0}}’ ] which is isomorphic to U { 0 } U - \{ {\mathbf {0}}’ \} such that W { 0 } W \cup \{ {\mathbf {0}}’ \} is a subusl of D \mathcal {D} . The decision procedure follows easily from these results. As a corollary to the \forall \exists -decision procedure for D \mathcal {D} , we show that no degree a > 0 {\mathbf {a}} > {\mathbf {0}} is definable by any \exists \forall -formula of degree theory. As a start on restricting the formulas which could possibly define the various jump classes we classify the generalized jump classes which are invariant for any \forall or \exists -formula. The analysis again uses the decision procedure for the \forall \exists -theory of D \mathcal {D} . A similar analysis is carried out for the high/low hierarchy using the decision procedure for the \forall \exists -theory of D [ 0 , 0 ] \mathcal {D}[{\mathbf {0}},\,{\mathbf {0}}’ ] . (A jump class C \mathcal {C} is σ \sigma -invariant if σ ( a ) \sigma ({\mathbf {a}}) holds for every a {\mathbf {a}} in C \mathcal {C} .)

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. Initial segments of degrees below 0′;Epstein, Richard L.;Mem. Amer. Math. Soc.,1981

2. Degrees of generic sets;Jockusch, Carl G., Jr.,1980

3. Simple proofs of some theorems on high degrees of unsolvability;Jockusch, Carl G., Jr.;Canadian J. Math.,1977

4. Double jumps of minimal degrees;Jockusch, Carl G., Jr.;J. Symbolic Logic,1978

5. The upper semi-lattice of degrees of recursive unsolvability;Kleene, S. C.;Ann. of Math. (2),1954

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3