Regularity of weak solutions of parabolic variational inequalities

Author:

Ziemer William P.

Abstract

In this paper, parabolic operators of the form \[ u t div A ( x , t , u , D u ) B ( x , t , u , D u ) {u_t} - \operatorname {div} A(x,\,t,\,u,\,Du) - B(x,\,t,\,u,\,Du) \] are considered where A A and B B are Borel measurable and subject to linear growth conditions. Let ψ : Ω R 1 \psi :\,\Omega \to {R^1} be a Borel function bounded above (an obstacle) where Ω R n + 1 \Omega \subset {R^{n + 1}} . Let u W 1 , 2 ( Ω ) u \in {W^{1,2}}(\Omega ) be a weak solution of the variational inequality in the following sense: assume that u ψ u \geqslant \psi q.e. and \[ Ω u t φ + A D φ B φ 0 \int _\Omega {{u_t}\varphi + A \cdot D\varphi - B\varphi \geqslant 0} \] whenever φ W 0 1 , 2 ( Ω ) \varphi \in W_0^{1,2}(\Omega ) and φ u ψ \varphi \geqslant u - \psi q.e. Here q.e. means everywhere except for a set of classical parabolic capacity. It is shown that u u is continuous even though the obstacle may be discontinuous. A mild condition on ψ \psi which can be expressed in terms of the fine topology is sufficient to ensure the continuity of u u . A modulus of continuity is obtained for u u in terms of the data given for ψ \psi .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Local behavior of solutions of quasilinear parabolic equations;Aronson, D. G.;Arch. Rational Mech. Anal.,1967

2. Nonlinear parabolic variational inequalities;Biroli, Marco;Comment. Math. Univ. Carolin.,1985

3. Wiener estimates for parabolic obstacle problems;Biroli, M.;Nonlinear Anal.,1987

4. Potential methods in variational inequalities;Caffarelli, L. A.;J. Analyse Math.,1980

5. Sulla hölderianità delle soluzioni di alcune disequazioni variazionali con condizioni unilatere al bordo;Beirão da Veiga, Hugo;Ann. Mat. Pura Appl. (4),1969

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Periodic solutions to a class of quasi-variational evolution equations;Journal of Differential Equations;2024-03

2. PDE methods for optimal Skorokhod embeddings;Calculus of Variations and Partial Differential Equations;2019-06

3. Boundary estimates for non-negative solutions to non-linear parabolic equations;Calculus of Variations and Partial Differential Equations;2014-12-11

4. Nonlinear gradient estimates for parabolic problems with irregular obstacles;Nonlinear Analysis: Theory, Methods & Applications;2014-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3