Uniqueness of left invariant symplectic structures on the affine Lie group

Author:

Agaoka Yoshio

Abstract

We show the uniqueness of left invariant symplectic structures on the affine Lie group A ( n , R ) A(n,\mathbf {R}) under the adjoint action of A ( n , R ) A(n,\mathbf {R}) , by giving an explicit formula of the Pfaffian of the skew symmetric matrix naturally associated with A ( n , R ) A(n,\mathbf {R}) , and also by giving an unexpected identity on it which relates two left invariant symplectic structures. As an application of this result, we classify maximum rank left invariant Poisson structures on the simple Lie groups S L ( n , R ) SL(n,\mathbf {R}) and S L ( n , C ) SL(n, \mathbf {C}) . This result is a generalization of Stolin’s classification of constant solutions of the classical Yang-Baxter equation for s l ( 2 , C ) \mathfrak {sl}(2, \mathbf {C}) and s l ( 3 , C ) \mathfrak {sl}(3,\mathbf {C}) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference14 articles.

1. [1] Y. Agaoka, Left invariant Poisson structures on classical non-compact simple Lie groups, Israel J. Math. 116 (2000), 189–222.

2. Solutions of the classical Yang-Baxter equation for simple Lie algebras;Belavin, A. A.;Funktsional. Anal. i Prilozhen.,1982

3. Le groupe affine comme variété symplectique;Bordemann, Martin;Tohoku Math. J. (2),1993

4. Some remarks on the classification of Poisson Lie groups;Cahen, Michel,1994

5. Double extension symplectique d’un groupe de Lie symplectique;Dardié, Jean-Michel;Adv. Math.,1996

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eight-dimensional symplectic non-solvable Lie algebras;Communications in Algebra;2023-09-27

2. Bi-Lagrangian Structure on the Symplectic Affine Lie Algebra $\frak{aff}(2,\mathbb{R})$;Journal of Geometry and Symmetry in Physics;2020

3. g-QUASI-FROBENIUS LIE ALGEBRAS;ARCH MATH-BRNO;2016

4. $\mathfrak{g}$-quasi-Frobenius Lie algebras;Archivum Mathematicum;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3