On nonexistence of Baras–Goldstein type for higher-order parabolic equations with singular potentials

Author:

Galaktionov V.,Kamotski I.

Abstract

The celebrated result by Baras and Goldstein (1984) established that the heat equation with singular inverse square potential in a smooth bounded domain Ω R N \Omega \subset \mathbb {R}^N , N 3 N \ge 3 , such that 0 Ω 0 \in \Omega , \[ u t = Δ u + c | x | 2 u in Ω × ( 0 , T ) , u | Ω = 0 , u_t= \Delta u + \frac c{|x|^2} u \;\; \text {in} \;\; \Omega \times (0,T), \;\; u \big |_{\partial \Omega }=0, \] in the supercritical range \[ c > c H a r d y ( 1 ) = ( N 2 2 ) 2 , c > c_{\mathrm {Hardy}}(1) = \big (\frac {N-2}2\big )^2, \] does not have a solution for any nontrivial L 1 L^1 initial data u 0 ( x ) 0 u_0(x) \ge 0 in Ω \Omega or for a positive measure. Namely, it was proved that a regular approximation of a possible solution by a sequence { u n ( x , t ) } \{u_n(x,t)\} of classical solutions of uniformly parabolic equations with bounded truncated potentials given by \[ V ( x ) = c | x | 2 V n ( x ) = min { c | x | 2 , n } ( n 1 ) V(x) = \frac c{|x|^2} \mapsto V_n(x)=\min \big \{ \frac c{|x|^2}, \, n \big \} \,\,\, (n \ge 1) \] diverges, and, as n n \to \infty , \[ u n ( x , t ) + in Ω × ( 0 , T ) . u_n(x,t) \to +\infty \quad \mbox {in} \quad \Omega \times (0,T). \] In the present paper, we reveal the connection of this “very singular” evolution with a spectrum of some “limiting” operator. The proposed approach allows us to consider more general higher-order operators (for which Hardy’s inequalities were known since Rellich, 1954) and initial data that are not necessarily positive. In particular it is established that, under some natural hypothesis, the divergence result is valid for any 2 m 2m th-order parabolic equation with singular potential \[ u t = ( Δ ) m u + c | x | 2 m u i n Ω × ( 0 , T ) , w h e r e c > c H ( m ) , ; m 1 , u_t = -(-\Delta )^m u + \frac c{|x|^{2m}}\, u \;\; \mathrm {in} \;\; \Omega \times (0,T), \;\; \mathrm {where} \;\; c>c_{\mathrm {H}}(m), \,; m \ge 1, \] with zero Dirichlet conditions on Ω \partial \Omega and for a wide class of initial data. In particular, typically, the divergence holds for any data satisfying \[ u 0 ( x ) is continuous at  x = 0  and  u 0 ( 0 ) > 0 . u_0(x) \;\; \text {is continuous at $x=0$ and $u_0(0)>0$}. \] Similar nonexistence (i.e., divergence as ε 0 \varepsilon \to 0 ) results are also derived for time-dependent potentials ε 2 m q ( x ε , t ε 2 m ) \varepsilon ^{-2m}q(\frac {x}{\varepsilon }, \frac {t}{\varepsilon ^{2m}}) and nonlinear reaction terms | u | p ε 2 m + | x | 2 m \frac {|u|^p}{\varepsilon ^{2m}+|x|^{2m}} with p > 1 p>1 . Applications to other, linear and semilinear, Schrödinger and wave PDEs are discussed.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. The heat equation with a singular potential;Baras, Pierre;Trans. Amer. Math. Soc.,1984

2. M.S. Birman and M.Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, D. Reidel, Dordrecht/Tokyo, 1987.

3. Some simple nonlinear PDE’s without solutions;Brezis, Haïm;Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8),1998

4. Hardy’s inequalities revisited;Brezis, Haïm;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),1997

5. Blow-up solutions of some nonlinear elliptic problems;Brezis, Haim;Rev. Mat. Univ. Complut. Madrid,1997

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3