Gelfond’s method for algebraic independence

Author:

Brownawell W. Dale

Abstract

This paper extends Gelfond’s method for algebraic independence to fields K K with transcendence type τ \leqslant \tau . The main results show that the elements of a transcendence basis for K K and at least two more numbers from a prescribed set are algebraically independent over Q Q . The theorems have a common hypothesis: { α 1 , , α M } , { β 1 , , β N } \{ {\alpha _1}, \ldots ,{\alpha _M}\} ,\{ {\beta _1}, \ldots ,{\beta _N}\} are sets of complex numbers, each of which is Q Q -linearly independent. THEOREM A. If ( 2 τ 1 ) > M N (2\tau - 1) > MN , then at least two of the numbers α i , β j , exp ( α i β j ) , 1 i M , 1 j N {\alpha _i},{\beta _j},\exp ({\alpha _i}{\beta _j}),1 \leqslant i \leqslant M,1 \leqslant j \leqslant N , are algebraically dependent over K K . THEOREM B. If 2 τ ( M + N ) M N + M 2\tau (M + N) \leqslant MN + M , then at least two of the numbers α i , exp ( α i , β j ) , 1 i M , 1 j N {\alpha _i},\exp ({\alpha _i},{\beta _j}),1 \leqslant i \leqslant M,1 \leqslant j \leqslant N , are algebraically dependent over K K . THEOREM C. If 2 τ ( M + N ) M N 2\tau (M + N) \leqslant MN , then at least two of the numbers 1 i M , 1 j N 1 \leqslant i \leqslant M,1 \leqslant j \leqslant N , are algebraically dependent over K K .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. Transcendental numbers in the 𝑃-adic domain;Adams, William W.;Amer. J. Math.,1966

2. Some transcendence results for the exponential function;Brownawell, W. Dale;Norske Vid. Selsk. Skr. (Trondheim),1972

3. The algebraic independence of certain values of the exponential function;Brownawell, Dale;Norske Vid. Selsk. Skr. (Trondheim),1972

4. Sequences of Diophantine approximations;Brownawell, W. Dale;J. Number Theory,1974

5. The algebraic independence of certain numbers related by the exponential function;Brownawell, W. Dale;J. Number Theory,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3