This paper extends Gelfond’s method for algebraic independence to fields
K
K
with transcendence type
⩽
τ
\leqslant \tau
. The main results show that the elements of a transcendence basis for
K
K
and at least two more numbers from a prescribed set are algebraically independent over
Q
Q
. The theorems have a common hypothesis:
{
α
1
,
…
,
α
M
}
,
{
β
1
,
…
,
β
N
}
\{ {\alpha _1}, \ldots ,{\alpha _M}\} ,\{ {\beta _1}, \ldots ,{\beta _N}\}
are sets of complex numbers, each of which is
Q
Q
-linearly independent. THEOREM A. If
(
2
τ
−
1
)
>
M
N
(2\tau - 1) > MN
, then at least two of the numbers
α
i
,
β
j
,
exp
(
α
i
β
j
)
,
1
⩽
i
⩽
M
,
1
⩽
j
⩽
N
{\alpha _i},{\beta _j},\exp ({\alpha _i}{\beta _j}),1 \leqslant i \leqslant M,1 \leqslant j \leqslant N
, are algebraically dependent over
K
K
. THEOREM B. If
2
τ
(
M
+
N
)
⩽
M
N
+
M
2\tau (M + N) \leqslant MN + M
, then at least two of the numbers
α
i
,
exp
(
α
i
,
β
j
)
,
1
⩽
i
⩽
M
,
1
⩽
j
⩽
N
{\alpha _i},\exp ({\alpha _i},{\beta _j}),1 \leqslant i \leqslant M,1 \leqslant j \leqslant N
, are algebraically dependent over
K
K
. THEOREM C. If
2
τ
(
M
+
N
)
⩽
M
N
2\tau (M + N) \leqslant MN
, then at least two of the numbers
1
⩽
i
⩽
M
,
1
⩽
j
⩽
N
1 \leqslant i \leqslant M,1 \leqslant j \leqslant N
, are algebraically dependent over
K
K
.