Heegaard splittings of branched coverings of 𝑆³

Author:

Birman Joan S.,Hilden Hugh M.

Abstract

This paper concerns itself with the relationship between two seemingly different methods for representing a closed, orientable 3-manifold: on the one hand as a Heegaard splitting, and on the other hand as a branched covering of the 3-sphere. The ability to pass back and forth between these two representations will be applied in several different ways: 1. It will be established that there is an effective algorithm to decide whether a 3-manifold of Heegaard genus 2 is a 3-sphere. 2. We will show that the natural map from 6-plat representations of knots and links to genus 2 closed oriented 3-manifolds is injective and surjective. This relates the question of whether or not Heegaard splittings of closed, oriented 3-manifolds are “unique” to the question of whether plat representations of knots and links are “unique". 3. We will give a counterexample to a conjecture (unpublished) of W. Haken, which would have implied that S 3 {S^3} could be identified (in the class of all simply-connected 3-manifolds) by the property that certain canonical presentations for π 1 S 3 {\pi _1}{S^3} are always “nice". The final section of the paper studies a special class of genus 2 Heegaard splittings: the 2-fold covers of S 3 {S^3} which are branched over closed 3-braids. It is established that no counterexamples to the “genus 2 Poincaré conjecture” occur in this class of 3-manifolds.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3