A trace on fractal graphs and the Ihara zeta function

Author:

Guido Daniele,Isola Tommaso,Lapidus Michel

Abstract

Starting with Ihara’s work in 1968, there has been a growing interest in the study of zeta functions of finite graphs, by Sunada, Hashimoto, Bass, Stark and Terras, Mizuno and Sato, to name just a few authors. Then, Clair and Mokhtari-Sharghi studied zeta functions for infinite graphs acted upon by a discrete group of automorphisms. The main formula in all these treatments establishes a connection between the zeta function, originally defined as an infinite product, and the Laplacian of the graph. In this article, we consider a different class of infinite graphs. They are fractal graphs, i.e. they enjoy a self-similarity property. We define a zeta function for these graphs and, using the machinery of operator algebras, we prove a determinant formula, which relates the zeta function with the Laplacian of the graph. We also prove functional equations, and a formula which allows approximation of the zeta function by the zeta functions of finite subgraphs.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference43 articles.

1. Elliptic operators, discrete groups and von Neumann algebras;Atiyah, M. F.,1976

2. Heat kernels and sets with fractal structure;Barlow, Martin T.,2003

3. Counting paths in graphs;Bartholdi, Laurent;Enseign. Math. (2),1999

4. The Ihara-Selberg zeta function of a tree lattice;Bass, Hyman;Internat. J. Math.,1992

5. Progress in Mathematics;Bass, Hyman,2001

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trace formulas for Schrödinger operators on periodic graphs;Journal of Mathematical Analysis and Applications;2022-04

2. An Index for Graphs and Graph Groupoids;Axioms;2022-01-25

3. The Ihara zeta function for infinite graphs;Transactions of the American Mathematical Society;2018-09-18

4. Limiting eigenvalue distribution of random matrices of Ihara zeta function of long-range percolation graphs;Random Matrices: Theory and Applications;2018-06-19

5. Dixmier traces and extrapolation description of noncommutative Lorentz spaces;Journal of Functional Analysis;2014-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3