Geometric families of constant reductions and the Skolem property

Author:

Green Barry

Abstract

Let F | K F|K be a function field in one variable and V \mathcal V be a family of independent valuations of the constant field K . K. Given v V , v\in \mathcal V , a valuation prolongation v \mathrm v to F F is called a constant reduction if the residue fields F v | K v F\mathrm v |Kv again form a function field of one variable. Suppose t F t\in F is a non-constant function, and for each v V v\in \mathcal V let V t V_{t} be the set of all prolongations of the Gauß valuation v t v_{t} on K ( t ) K(t) to F . F. The union of the sets V t V_{t} over all v V v\in \mathcal V is denoted by V t . \mathbfit {V}_{t}. The aim of this paper is to study families of constant reductions V \mathbfit {V} of F F prolonging the valuations of V \mathcal V and the criterion for them to be principal, that is to be sets of the type V t . \mathbfit {V}_{t}. The main result we prove is that if either V \mathcal V is finite and each v V v\in \mathcal V has rational rank one and residue field algebraic over a finite field, or if V \mathcal V is any set of non-archimedean valuations of a global field K K satisfying the strong approximation property, then each geometric family of constant reductions V \mathbfit {V} prolonging V \mathcal V is principal. We also relate this result to the Skolem property for the existence of V \mathcal V -integral points on varieties over K , K, and Rumely’s existence theorem. As an application we give a birational characterization of arithmetic surfaces X / S \mathcal X /S in terms of the generic points of the closed fibre. The characterization we give implies the existence of finite morphisms to P S 1 . \mathbb P ^{1}_{S}.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. The weight-changing operator and the Mellin transform of modular integrals;Knopp, Marvin I.,1983

2. On curves over valuation rings and morphisms to 𝑃¹;Green, Barry;J. Number Theory,1996

3. On valued function fields. I;Green, B.;Manuscripta Math.,1989

4. On valued function fields. II. Regular functions and elements with the uniqueness property;Green, B.;J. Reine Angew. Math.,1990

5. On valued function fields. III. Reductions of algebraic curves;Green, B.;J. Reine Angew. Math.,1992

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite morphisms to projective space and capacity theory;Journal für die reine und angewandte Mathematik (Crelles Journal);2017-01-01

2. Higher adeles and non-abelian Riemann–Roch;Advances in Mathematics;2015-08

3. Hypersurfaces in projective schemes and a moving lemma;Duke Mathematical Journal;2015-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3