The approximate functional formula for the theta function and Diophantine Gauss sums

Author:

Coutsias E.,Kazarinoff N.

Abstract

We consider the polygonal lines in the complex plane C \Bbb {C} whose N N -th vertex is defined by S N = n = 0 N exp ( i ω π n 2 ) S_N = \sum _{n=0}^{N\,’} \exp (i\omega \pi n^2) (with ω R \omega \in \Bbb {R} ), where the prime means that the first and last terms in the sum are halved. By introducing the discrete curvature of the polygonal line, and by exploiting the similarity of segments of the line, for small ω \omega , to Cornu spirals (C-spirals), we prove the precise renormalization formula a m p ; | k = 0 N exp ( i ω π k 2 ) exp ( s g n ( ω ) i π / 4 ) | ω | k = 0 n exp ( i π ω k 2 ) | a m p ; C | ω N n ω | , 0 > | ω | > 1 , \begin{equation} \begin {split} &\left | \sum _{k=0}^{N}\,’ \exp (i\omega \pi k^2) -\frac {\exp (sgn(\omega )i\pi /4)}{\sqrt {|\omega |}} \sum _{k=0}^n \,’ \exp (-i\frac {\pi }{\omega } k^2)\right |\\ &\qquad \leq C \left |\frac {\omega N - n}{\omega }\right |, 0>|\omega | >1, \end{split} \end{equation} where N = [ [ n / ω ] ] N=[[n/\omega ]] , the nearest integer to n / ω n/\omega and 1 > C > 3.14 1>C>3.14 . This formula, which sharpens Hardy and Littlewood’s approximate functional formula for the theta function, generalizes to irrationals, as a Diophantine inequality, the well-known sum formula of Gauss. The geometrical meaning of the relation between the two limits is that the first sum is taken to a point of inflection of the corresponding C-spirals. The second sum replaces whole C-spirals of the first by unit vectors times scale and phase factors. The block renormalization procedure implied by this replacement is governed by the circle map ω 1 ω ( mod 2 ) , ω ] 1 , + 1 [ { 0 } , \begin{equation} \omega \rightarrow -\frac {1}{\omega } \pmod 2 , \omega \in ]-1,+1[ \setminus \{0\}, \end{equation} whose orbits are analyzed by expressing ω \omega as an even continued fraction.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. Undergraduate Texts in Mathematics;Apostol, Tom M.,1976

2. Renormalisation of curlicues;Berry, M. V.;Nonlinearity,1988

3. Random renormalization in the semiclassical long-time limit of a precessing spin;Berry, M. V.;Phys. D,1988

4. J.L. Callot and M. Diener, “Variations en spirale”, Document du travail 6, p. 16-50, Oran, 1984.

5. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Chandrasekharan, K.,1985

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Filament plots for data visualization;Applied and Computational Harmonic Analysis;2022-09

2. Weyl sums and the Lyapunov exponent for the skew-shift Schrödinger cocycle;Journal of Spectral Theory;2020-10-11

3. Cornu Spirals and the Triangular Lacunary Trigonometric System;Fractal and Fractional;2019-07-10

4. Quadratic Weyl sums, automorphic functions and invariance principles;Proceedings of the London Mathematical Society;2016-10-24

5. Hardy-Littlewood series and even continued fractions;Journal d'Analyse Mathématique;2015-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3