Geodesics in Euclidean space with analytic obstacle

Author:

Albrecht Felix,Berg I. D.

Abstract

In this note we are concerned with the behavior of geodesies in Euclidean n n -space with a smooth obstacle. Our principal result is that if the obstacle is locally analytic, that is, locally of the form x n = f ( x 1 , , x n 1 ) {x_n} = f({x_1}, \ldots ,{x_{n - 1}}) for a real analytic function f f , then a geodesic can have, in any segment of finite arc length, only a finite number of distinct switch points, points on the boundary that bound a segment not touching the boundary. This result is certainly false that for a C {C^\infty } boundary. Indeed, even in E 2 {E^2} , where our result is obvious for analytic boundaries, we can construct a C {C^\infty } boundary so that the closure of the set of switch points is of positive measure.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference7 articles.

1. Geodesics in Riemannian manifolds-with-boundary;Alexander, Ralph;Indiana Univ. Math. J.,1981

2. The Riemannian obstacle problem;Alexander, Stephanie B.;Illinois J. Math.,1987

3. Cauchy uniqueness in the Riemannian obstacle problem;Alexander, Stephanie B.,1986

4. A theorem on triangles in a metric space and some of its applications;Aleksandrov, A. D.;Trudy Mat. Inst. Steklov.,1951

5. Singularities in the calculus of variations;Arnol′d, V. I.,1983

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unconstrained and Curvature-Constrained Shortest-Path Distances and Their Approximation;Discrete & Computational Geometry;2019-01-29

2. Optimal Coordinated Motions of Multiple Agents Moving on a Plane;SIAM Journal on Control and Optimization;2003-01

3. Global geodesic coordinates on a G0 continuous surface;Mathematics in Industrial Problems;1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3