Discretization in the method of averaging

Author:

Fečkan Michal

Abstract

Let f : R × R m ¯ × R R m ¯ , f = f ( ε , x , t ) f:R \times {R^{\overline m }} \times R \to {R^{\overline m }},f = f(\varepsilon ,x,t) be a C 2 {C^2} -mapping 1 1 -periodic in t t having the form f ( 0 , x , t ) = A x + o ( | x | ) f(0,x,t) = Ax + o(|x|) as x 0 x \to 0 where A L ( R m ¯ ) A \in \mathcal {L}({R^{\overline m }}) has no eigenvalues with zero real parts. We study the relation between local stable manifolds of the equation \[ x = ε f ( ε , x , t ) , ε > 0 is small x’ = \varepsilon f(\varepsilon ,x,t),\varepsilon > 0{\text {is}}\;{\text {small}} \] and of its discretization \[ x n + 1 = x n + ( ε / m ) f ( ε , x n , t n ) , t n + 1 = t n + 1 / m , {x_{n + 1}} = {x_n} + (\varepsilon /m)f(\varepsilon ,{x_n},{t_n}),{t_{n + 1}} = {t_n} + 1/m, \] where m { 1 , 2 , } = N m \in \{ 1,2, \ldots \} = \mathcal {N} . We show behavior of these manifolds of the discretization for the following cases: (a) m , ε ε ¯ > 0 m \to \infty ,\varepsilon \to \overline \varepsilon > 0 , (b) m , ε 0 m \to \infty ,\varepsilon \to 0 , (c) m k N , ε 0 m \to k \in \mathcal {N},\varepsilon \to 0 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference6 articles.

1. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Chow, Shui Nee,1982

2. A symmetry theorem for variational problems;Fečkan, Michal;Nonlinear Anal.,1991

3. Asymptotic behavior of stable manifolds;Fečkan, Michal;Proc. Amer. Math. Soc.,1991

4. \bysame, The relation between a flow and its discretization, Mathematica Slovaca (to appear).

5. Qualitative theory of nonlinear resonance by averaging and dynamical systems methods;Murdock, James,1988

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Asymptotic Methods;Applied Mathematical Sciences;2014-11-11

2. Topological conjugacy of discrete time-map and Euler discrete dynamical systems generated by a gradient flow on a two-dimensional compact manifold;Nonlinear Analysis: Theory, Methods & Applications;2002-12

3. Estimation of the Euler method error on a Riemannian manifold;Communications in Numerical Methods in Engineering;2002-09-18

4. Dynamical properties of learning process of weakly nonlinear and nonlinear neurons;Nonlinear Analysis: Real World Applications;2001-06

5. On Cj-closeness between the solution flow and its numerical approximation;Journal of Difference Equations and Applications;1996-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3