Explicit Lower bounds for residues at 𝑠=1 of Dedekind zeta functions and relative class numbers of CM-fields

Author:

Louboutin Stéphane

Abstract

Let S S be a given set of positive rational primes. Assume that the value of the Dedekind zeta function ζ K \zeta _K of a number field K K is less than or equal to zero at some real point β \beta in the range 1 2 > β > 1 {1\over 2} >\beta >1 . We give explicit lower bounds on the residue at s = 1 s=1 of this Dedekind zeta function which depend on β \beta , the absolute value d K d_K of the discriminant of K K and the behavior in K K of the rational primes p S p\in S . Now, let k k be a real abelian number field and let β \beta be any real zero of the zeta function of k k . We give an upper bound on the residue at s = 1 s=1 of ζ k \zeta _k which depends on β \beta , d k d_k and the behavior in k k of the rational primes p S p\in S . By combining these two results, we obtain lower bounds for the relative class numbers of some normal CM-fields K K which depend on the behavior in K K of the rational primes p S p\in S . We will then show that these new lower bounds for relative class numbers are of paramount importance for solving, for example, the exponent-two class group problem for the non-normal quartic CM-fields. Finally, we will prove Brauer-Siegel-like results about the asymptotic behavior of relative class numbers of CM-fields.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The CM class number one problem for curves of genus 2;Research in Number Theory;2023-01-17

2. Explicit estimates for Artin L-functions: Duke's short-sum theorem and Dedekind zeta residues;Journal of Number Theory;2021-11

3. Algebraic Number Fields;Universitext;2020

4. The Story of Algebraic Numbers in the First Half of the 20th Century;Springer Monographs in Mathematics;2018

5. Real zeros of Dedekind zeta functions;International Journal of Number Theory;2015-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3