A parametric version of the Borwein-Preiss smooth variational principle is presented, which states that under suitable assumptions on a given convex function depending on a parameter, the minimum point of a smooth convex perturbation of it depends continuously on the parameter. Some applications are given: existence of a Nash equilibrium and a solution of a variational inequality for a system of partially convex functions, perturbed by arbitrarily small smooth convex perturbations when one of the functions has a non-compact domain; a parametric version of the Kuhn-Tucker theorem which contains a parametric smooth variational principle with constraints; existence of a continuous selection of a subdifferential mapping depending on a parameter. The tool for proving this parametric smooth variational principle is a useful lemma about continuous
ε
\varepsilon
-minimizers of quasi-convex functions depending on a parameter, which has independent interest since it allows direct proofs of Ky Fan’s minimax inequality, minimax equalities for quasi-convex functions, Sion’s minimax theorem, etc.