Here we relate the Gorenstein dimension of a group
G
G
,
G
c
d
R
G
\mathrm {Gcd}_{R}G
, over
Z
\mathbb Z
and
Q
\mathbb Q
to the cohomological dimension of
G
G
,
c
d
R
G
\mathrm {cd}_{R}G
, over
Z
\mathbb Z
and
Q
\mathbb Q
, and show that if
G
G
is in
L
H
F
{\scriptstyle \bf {LH}}\mathfrak F
, a large class of groups defined by Kropholler, then
c
d
Q
G
=
G
c
d
Q
G
\mathrm {cd}_{\mathbb Q}G=\mathrm {Gcd}_{\mathbb Q}G
and if
G
G
is torsion free, then
G
c
d
Z
G
=
c
d
Z
G
\mathrm {Gcd}_{\mathbb Z}G= \mathrm {cd}_{\mathbb Z}G
. We also show that for any group
G
G
,
G
c
d
Q
G
≤
G
c
d
Z
G
\mathrm {Gcd}_{\mathbb Q}G\leq \mathrm {Gcd}_{\mathbb Z}G
.