Phantom depth and stable phantom exactness

Author:

Epstein Neil

Abstract

Phantom depth, phantom nonzerodivisors, and phantom exact sequences are analogues of the non-“phantom” notions which have been useful in tackling the (very difficult) localization problem in tight closure theory. In the present paper, these notions are developed further and partially reworked. For instance, although no analogue of a long exact sequence arises from a short stably phantom exact sequence of complexes, we provide a method for recovering the kind of information obtainable from such a long sequence. Also, we give alternate characterizations of the notion of phantom depth, including one based on Koszul homology, which we use to show that with very mild conditions on a finitely generated module M M , any two maximal phantom M M -regular sequences in an ideal I I have the same length. In order to do so, we prove a “Nakayama lemma for tight closure”, which is of independent interest. We strengthen the connection of phantom depth with minheight, we explore several analogues of “associated prime” in tight closure theory, and we discuss a connection with the problem of when tight closure commutes with localization.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. Codimension and multiplicity;Auslander, Maurice;Ann. of Math. (2),1958

2. Finite phantom projective dimension;Aberbach, I. M.;Amer. J. Math.,1994

3. [Abe03] \bysame, personal communication, 2003.

4. Localization of tight closure and modules of finite phantom projective dimension;Aberbach, Ian M.;J. Reine Angew. Math.,1993

5. Modules over unramified regular local rings;Auslander, M.;Illinois J. Math.,1961

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some extensions of Hilbert–Kunz multiplicity;Collectanea Mathematica;2016-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3