Analytic contractions, nontangential limits, and the index of invariant subspaces

Author:

Aleman Alexandru,Richter Stefan,Sundberg Carl

Abstract

Let H \mathcal {H} be a Hilbert space of analytic functions on the open unit disc D \mathbb {D} such that the operator M ζ M_{\zeta } of multiplication with the identity function ζ \zeta defines a contraction operator. In terms of the reproducing kernel for H \mathcal {H} we will characterize the largest set Δ ( H ) D \Delta (\mathcal {H}) \subseteq \partial \mathbb {D} such that for each f , g H f, g \in \mathcal {H} , g 0 g \ne 0 the meromorphic function f / g f/g has nontangential limits a.e. on Δ ( H ) \Delta (\mathcal {H}) . We will see that the question of whether or not Δ ( H ) \Delta (\mathcal {H}) has linear Lebesgue measure 0 is related to questions concerning the invariant subspace structure of M ζ M_{\zeta } . We further associate with H \mathcal {H} a second set Σ ( H ) D \Sigma (\mathcal {H}) \subseteq \partial \mathbb {D} , which is defined in terms of the norm on H \mathcal {H} . For example, Σ ( H ) \Sigma (\mathcal {H}) has the property that | | ζ n f | | 0 ||\zeta ^{n}f|| \to 0 for all f H f \in \mathcal {H} if and only if Σ ( H ) \Sigma (\mathcal {H}) has linear Lebesgue measure 0. It turns out that Δ ( H ) Σ ( H ) \Delta (\mathcal {H}) \subseteq \Sigma (\mathcal {H}) a.e., by which we mean that Δ ( H ) Σ ( H ) \Delta (\mathcal {H}) \setminus \Sigma (\mathcal {H}) has linear Lebesgue measure 0. We will study conditions that imply that Δ ( H ) = Σ ( H ) \Delta (\mathcal {H}) = \Sigma (\mathcal {H}) a.e.. As one corollary to our results we will show that if dim H / ζ H = 1 \mathcal {H}/\zeta \mathcal {H} =1 and if there is a c > 0 c>0 such that for all f H f \in \mathcal {H} and all λ D \lambda \in \mathbb {D} we have | | ζ λ 1 λ ¯ ζ f | | c | | f | | ||\frac {\zeta -\lambda }{1-\overline {\lambda }\zeta }f||\ge c||f|| , then Δ ( H ) = Σ ( H ) \Delta (\mathcal {H}) =\Sigma (\mathcal {H}) a.e. and the following four conditions are equivalent: (1) | | ζ n f | | 0 ||\zeta ^{n} f||\nrightarrow 0 for some f H f \in \mathcal {H} , (2) | | ζ n f | | 0 ||\zeta ^{n} f||\nrightarrow 0 for all f H f \in \mathcal {H} , f 0 f \ne 0 , (3) Δ ( H ) \Delta (\mathcal {H}) has nonzero Lebesgue measure, (4) every nonzero invariant subspace M \mathcal {M} of M ζ M_{\zeta } has index 1, i.e., satisfies dim M / ζ M = 1 \mathcal {M}/\zeta \mathcal {M} =1 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. Some sufficient conditions for the division property of invariant subspaces in weighted Bergman spaces;Aleman, Alexandru;J. Funct. Anal.,1997

2. Pseudocontinuations and the backward shift;Aleman, Alexandru;Indiana Univ. Math. J.,1998

3. The majorization function and the index of invariant subspaces in the Bergman spaces;Aleman, Alexandru;J. Anal. Math.,2002

4. [ARS2] Aleman, Alexandru, Richter, Stefan, and Sundberg, Carl, Nontangential limits in 𝒫^{𝓉}(𝜇)-spaces and the index of invariant subspaces, preprint.

5. Invariant subspaces for the backward shift on Hilbert spaces of analytic functions with regular norm;Aleman, Alexandru,2006

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bergman Space of the Unit Disc;Lectures on Analytic Function Spaces and their Applications;2023

2. Linear graph transformations on spaces of analytic functions;Journal of Functional Analysis;2015-05

3. Spectral mapping theorems for polynomially bounded operators;Acta Scientiarum Mathematicarum;2015

4. Asymptotically cyclic quasianalytic contractions;Studia Mathematica;2014

5. On the shift index of contractions;Acta Scientiarum Mathematicarum;2012-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3