Operator and dual operator bases in linear topological spaces

Author:

Johnson William B.

Abstract

A net { S d : d D } \{ {S_d}:d \in D\} of continuous linear projections of finite range on a Hausdorff linear topological space V is said to be a Schauder operator basis—S.O.B. —(resp. Schauder dual operator basis—S.D.O.B.) provided it is pointwise bounded and converges pointwise to the identity operator on V, and S e S d = S d {S_e}{S_d} = {S_d} (resp. S d S e = S d {S_d}{S_e} = {S_d} ) whenever e d e \geqq d . S.O.B.’s and S.D.O.B.’s are natural generalizations of finite dimensional Schauder bases of subspaces. In fact, a sequence of operators is both a S.O.B. and S.D.O.B. iff it is the sequence of partial sum operators associated with a finite dimensional Schauder basis of subspaces. We show that many duality-theory results concerning Schauder bases can be extended to S.O.B.’s or S.D.O.B.’s. In particular, a space with a S.D.O.B. is semi-reflexive if and only if the S.D.O.B. is shrinking and boundedly complete. Several results on S.O.B.’s and S.D.O.B.’s were previously unknown even in the case of Schauder bases. For example, Corollary IV.2 implies that the strong dual of an evaluable space which admits a shrinking Schauder basis is a complete barrelled space.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. The Paley-Wiener theorem in metric linear spaces;Arsove, Maynard G.;Pacific J. Math.,1960

2. Properties of bases in spaces of type 𝐵₀;Bessaga, Cz.;Prace Mat.,1959

3. On biorthogonal systems;Dieudonné, Jean;Michigan Math. J.,1954

4. Schauder bases and Köthe sequence spaces;Dubinsky, Ed;Trans. Amer. Math. Soc.,1968

5. Integral bases in linear topological spaces;Dyer, James A.;Illinois J. Math.,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3