Primary decomposition: Compatibility, independence and linear growth

Author:

Yao Yongwei

Abstract

For finitely generated modules N M N \subsetneq M over a Noetherian ring R R , we study the following properties about primary decomposition: (1) The Compatibility property, which says that if Ass ( M / N ) = { P 1 , P 2 , , P s } \operatorname {Ass} (M/N)=\{ P_1, P_2, \dots , P_s\} and Q i Q_i is a P i P_i -primary component of N M N \subsetneq M for each i = 1 , 2 , , s i=1,2,\dots ,s , then N = Q 1 Q 2 Q s N =Q_1 \cap Q_2 \cap \cdots \cap Q_s ; (2) For a given subset X = { P 1 , P 2 , , P r } Ass ( M / N ) X=\{ P_1, P_2, \dots , P_r \} \subseteq \operatorname {Ass}(M/N) , X X is an open subset of Ass ( M / N ) \operatorname {Ass}(M/N) if and only if the intersections Q 1 Q 2 Q r = Q 1 Q 2 Q r Q_1 \cap Q_2\cap \cdots \cap Q_r= Q_1’ \cap Q_2’ \cap \cdots \cap Q_r’ for all possible P i P_i -primary components Q i Q_i and Q i Q_i’ of N M N\subsetneq M ; (3) A new proof of the ‘Linear Growth’ property, which says that for any fixed ideals I 1 , I 2 , , I t I_1, I_2, \dots , I_t of R R there exists a k N k \in \mathbb N such that for any n 1 , n 2 , , n t N n_1, n_2, \dots , n_t \in \mathbb N there exists a primary decomposition of I 1 n 1 I 2 n 2 I t n t M M I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M \subset M such that every P P -primary component Q Q of that primary decomposition contains P k ( n 1 + n 2 + + n t ) M P^{k(n_1+n_2+\cdots +n_t)}M .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. Asymptotic stability of 𝐴𝑠𝑠(𝑀/𝐼ⁿ𝑀);Brodmann, M.;Proc. Amer. Math. Soc.,1979

2. Graduate Texts in Mathematics;Eisenbud, David,1995

3. Tight closure, invariant theory, and the Briançon-Skoda theorem;Hochster, Melvin;J. Amer. Math. Soc.,1990

4. Uniform bounds in Noetherian rings;Huneke, Craig;Invent. Math.,1992

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subexponential-Time Computation of Isolated Primary Components of a Polynomial Ideal;Journal of Mathematical Sciences;2021-04-17

2. Tensor-multinomial sums of ideals: Primary decompositions and persistence of associated primes;Proceedings of the American Mathematical Society;2019-06-10

3. Primary Decompositions;Lecture Notes in Mathematics;2017

4. On the index of reducibility in Noetherian modules;Journal of Pure and Applied Algebra;2015-10

5. Binomial Canonical Decompositions of Binomial Ideals;Communications in Algebra;2011-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3