Hindman spaces

Author:

Kojman Menachem

Abstract

A topological space X X is Hindman if for every sequence ( x n ) n (x_n)_n in X X there exists an infinite D N D\subseteq \mathbb {N} so that the sequence ( x n ) n F S ( D ) (x_n)_{n\in FS(D)} , indexed by all finite sums over D D , is IP-converging in X X . Not all sequentially compact spaces are Hindman. The product of two Hindman spaces is Hindman.

Furstenberg and Weiss proved that all compact metric spaces are Hindman. We show that every Hausdorff space X X that satisfies the following condition is Hindman: \[ ( )\quad The closure of every countable set in  X  is compact and first-countable.\quad  \text {($*$)\quad The closure of every countable set in $X$ is compact and first-countable.\quad } \]

Consequently, there exist nonmetrizable and noncompact Hindman spaces. The following is a particular consequence of the main result: every bounded sequence of monotone (not necessarily continuous) real functions on [ 0 , 1 ] [0,1] has an IP-converging subsequences.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. A short proof of Hindman’s theorem;Baumgartner, James E.;J. Combinatorial Theory Ser. A,1974

2. Ergodic Ramsey theory—an update;Bergelson, Vitaly,1996

3. Nonmetrizable topological dynamics and Ramsey theory;Bergelson, Vitaly;Trans. Amer. Math. Soc.,1990

4. Topological dynamics and combinatorial number theory;Furstenberg, H.;J. Analyse Math.,1978

5. Recurrence in Ergodic Theory and Combinatorial Number Theory

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Katětov order between Hindman, Ramsey and summable ideals;Archive for Mathematical Logic;2024-05-03

2. A UNIFIED APPROACH TO HINDMAN, RAMSEY, AND VAN DER WAERDEN SPACES;The Journal of Symbolic Logic;2024-02-12

3. Unboring ideals;Fundamenta Mathematicae;2023

4. Differentially compact spaces;Topology and its Applications;2022-02

5. New Hindman spaces;Proceedings of the American Mathematical Society;2021-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3