A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of 𝕊ⁿ

Author:

Ashbaugh Mark,Benguria Rafael

Abstract

For a domain Ω \Omega contained in a hemisphere of the n n –dimensional sphere S n \mathbb {S}^n we prove the optimal result λ 2 / λ 1 ( Ω ) λ 2 / λ 1 ( Ω ) \lambda _2/\lambda _1(\Omega ) \le \lambda _2/\lambda _1(\Omega ^{\star }) for the ratio of its first two Dirichlet eigenvalues where Ω \Omega ^{\star } , the symmetric rearrangement of Ω \Omega in S n \mathbb {S}^n , is a geodesic ball in S n \mathbb {S}^n having the same n n –volume as Ω \Omega . We also show that λ 2 / λ 1 \lambda _2/\lambda _1 for geodesic balls of geodesic radius θ 1 \theta _1 less than or equal to π / 2 \pi /2 is an increasing function of θ 1 \theta _1 which runs between the value ( j n / 2 , 1 / j n / 2 1 , 1 ) 2 (j_{n/2,1}/j_{n/2-1,1})^2 for θ 1 = 0 \theta _1=0 (this is the Euclidean value) and 2 ( n + 1 ) / n 2(n+1)/n for θ 1 = π / 2 \theta _1=\pi /2 . Here j ν , k j_{\nu ,k} denotes the k k th positive zero of the Bessel function J ν ( t ) J_{\nu }(t) . This result generalizes the Payne–Pólya–Weinberger conjecture, which applies to bounded domains in Euclidean space and which we had proved earlier. Our method makes use of symmetric rearrangement of functions and various technical properties of special functions. We also prove that among all domains contained in a hemisphere of S n \mathbb {S}^n and having a fixed value of λ 1 \lambda _1 the one with the maximal value of λ 2 \lambda _2 is the geodesic ball of the appropriate radius. This is a stronger, but slightly less accessible, isoperimetric result than that for λ 2 / λ 1 \lambda _2/\lambda _1 . Various other results for λ 1 \lambda _1 and λ 2 \lambda _2 of geodesic balls in S n \mathbb {S}^n are proved in the course of our work.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference53 articles.

1. National Bureau of Standards Applied Mathematics Series, No. 55,1966

2. Undergraduate Texts in Mathematics;Armstrong, Mark Anthony,1983

3. Log-concavity of the ground state of Schrödinger operators: a new proof of the Baumgartner-Grosse-Martin inequality;Ashbaugh, Mark S.;Phys. Lett. A,1988

4. Optimal lower bounds for eigenvalue gaps for Schrödinger operators with symmetric single-well potentials and related results;Ashbaugh, M. S.,1988

5. Proof of the Payne-Pólya-Weinberger conjecture;Ashbaugh, Mark S.;Bull. Amer. Math. Soc. (N.S.),1991

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3