Uniqueness of solution to a free boundary problem from combustion

Author:

Lederman C.,Vázquez J.,Wolanski N.

Abstract

We investigate the uniqueness and agreement between different kinds of solutions for a free boundary problem in heat propagation that in classical terms is formulated as follows: to find a continuous function u ( x , t ) 0 , u(x,t)\geq 0, defined in a domain D R N × ( 0 , T ) \mathcal {D} \subset {\mathbb {R}}^{N}\times (0,T) and such that \[ Δ u + a i u x i u t = 0 in D { u > 0 } . \Delta u+\sum a_{i}\,u_{x_{i}}-u_{t}=0\quad \text {in}\quad \mathcal {D}\cap \{u>0\}. \] We also assume that the interior boundary of the positivity set, D { u > 0 } \mathcal {D} \cap \partial \{u> 0\} , so-called free boundary, is a regular hypersurface on which the following conditions are satisfied: \[ u = 0 , u / ν = C . u=0 ,\quad -\partial u/\partial \nu = C. \] Here ν \nu denotes outward unit spatial normal to the free boundary. In addition, initial data are specified, as well as either Dirichlet or Neumann data on the parabolic boundary of D \mathcal {D} . This problem arises in combustion theory as a limit situation in the propagation of premixed flames (high activation energy limit). The problem admits classical solutions only for good data and for small times. Several generalized concepts of solution have been proposed, among them the concepts of limit solution and viscosity solution. We investigate conditions under which the three concepts agree and produce a unique solution.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. Classical solutions to a multidimensional free boundary problem arising in combustion theory;Andreucci, Daniele;Comm. Partial Differential Equations,1994

2. Approximationseigenschaften der Lösungen elliptischer Differentialgleichungen und die Eindeutigkeitseigenschaft im Kleinen;Wildenhain, Günther,1989

3. Quelques aspects mathématiques de la propagation des flammes prémélangées;Berestycki, H.,1991

4. Traveling wave solutions to combustion models and their singular limits;Berestycki, Henri;SIAM J. Math. Anal.,1985

5. [BoG] A. Bonnet and L. Glangetas, Non-uniqueness for traveling fronts in the limit of high activation energy, preprint.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed boundary value problems for parabolic equations in Sobolev spaces with mixed-norms;Calculus of Variations and Partial Differential Equations;2022-11-05

2. Optimal Regularity of Mixed Dirichlet-Conormal Boundary Value Problems for Parabolic Operators;SIAM Journal on Mathematical Analysis;2022-03-01

3. Local in time solvability of a nonstandard free boundary problem in stratigraphy: A Lagrangian approach;Nonlinear Analysis: Real World Applications;2015-04

4. A free-boundary problem for the evolution p-Laplacian equation with a combustion boundary condition;Calculus of Variations and Partial Differential Equations;2008-09-30

5. Nonuniqueness in a Free Boundary Problem from Combustion;Journal of Geometric Analysis;2008-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3