A Haar-type theory of best 𝐿₁-approximation with constraints

Author:

Kroó András,Schmidt Darrell

Abstract

A general setting for constrained L 1 {L^1} -approximation is presented. Let U n {U_n} be a finite dimensional subspace of C [ a , b ] C[a,b] and L L be a linear operator from U n {U_n} to C r ( K ) ( r = 0 , 1 ) {C^r}(K)\;(r = 0,1) where K K is a finite union of disjoint, closed, bounded intervals. For υ , u C r ( K ) \upsilon ,u \in {C^r}(K) with υ > u \upsilon > u , the approximating set is U ~ n ( υ , u ) = { p U n : υ L p u on K } {\tilde U_n}(\upsilon ,u) = \{ p \in {U_n}:\upsilon \leq Lp \leq u\;{\text {on}}\;K\} and the norm is f w = a b | f | w d x \|f\|_w = \int _a^b {|f|w\,dx} where w w a positive continuous function on [ a , b ] [a,b] . We obtain necessary and sufficient conditions for U ~ n ( υ , u ) {\tilde U_n}(\upsilon ,u) to admit unique best w \|\;\cdot \;\|_w -approximations to all f C [ a , b ] f \in C[a,b] for all positive continuous w w and all υ , u C r ( K ) ( r = 0 , 1 ) \upsilon ,u \in {C^r}(K)\;(r = 0,1) satisfying a nonempty interior condition. These results are applied to several L 1 {L^1} -approximation problems including polynomial and spline approximation with restricted derivatives, lacunary polynomial approximation with restricted derivatives, and others.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. A unified approach to uniform real approximation by polynomials with linear restrictions;Chalmers, Bruce L.;Trans. Amer. Math. Soc.,1972

2. Uniform approximation with constraints;Chalmers, B. L.;Jahresber. Deutsch. Math.-Verein.,1978

3. On uniqueness of functions of best approximation in the metric of the space 𝐿₁;Havinson, S. Ja.;Izv. Akad. Nauk SSSR Ser. Mat.,1958

4. On an 𝐿₁-approximation problem;Kroó, András;Proc. Amer. Math. Soc.,1985

5. \bysame, Best 𝐿¹-approximation with varying weights, Proc. Amer. Math. Soc. 99 (1987), 6670.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3