Number of solutions with a norm bounded by a given constant of a semilinear elliptic PDE with a generic right-hand side

Author:

Nabutovsky Alexander

Abstract

We consider a semilinear boundary value problem Δ u + f ( u , x ) = 0 - \Delta u + f(u,x) = 0 in Ω R N \Omega \subset {\mathbb {R}^N} and u = 0 u = 0 on Ω \partial \Omega . We assume that f f is a C {C^\infty } -smooth function and Ω \Omega is a bounded domain with a smooth boundary. For any C α {C^\alpha } -smooth perturbation h ( x ) h(x) of the right-hand side of the equation we consider the function N h ( S ) {N_h}(S) defined as the number of C 2 + α {C^{2 + \alpha }} -smooth solutions u u such that u C 0 ( Ω ) S \left \| u\right \| _{{C^0}(\Omega )} \leq S of the perturbed problem. How "small" N h ( S ) {N_h}(S) can be made by a perturbation h ( x ) h(x) such that h C 0 ( Ω ) ε ? \left \| h\right \| _{{C^0}(\Omega )} \leq \varepsilon ? We present here an explicit upper bound in terms of ε \varepsilon , S S and \[ max | u | S , x Ω ¯ D u i f ( u , x ) ( i { 0 , 1 , 2 } ) . \max \limits _{|u| \leq S,x \in \bar \Omega } \left \| D_u^i f(u,x)\right \| \quad (i \in \{ 0,1,2\} ). \] If S S is fixed then h h can be chosen by such a way that the upper bound persists under small in C 0 {C^0} -topology perturbations of h h . We present an explicit lower bound for the radius of the ball of such admissible perturbations.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. A perturbation method in critical point theory and applications;Bahri, Abbas;Trans. Amer. Math. Soc.,1981

2. Monographs and Studies in Mathematics;Bandle, Catherine,1980

3. From vanishing theorems to estimating theorems: the Bochner technique revisited;Bérard, Pierre H.;Bull. Amer. Math. Soc. (N.S.),1988

4. Über die Existenz der Lösungen von Randwertaufgaben bei gewöhnlichen nichtlinearen Differentialgleichungen zweiter Ordnung;Ehrmann, Hans;Math. Ann.,1957

5. A generic property of the set of stationary solutions of Navier Stokes equations;Foiaş, C.,1976

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3