The structure of rings in some varieties with definable principal congruences

Author:

Simons G. E.

Abstract

We study varieties of rings with identity that satisfy an identity of the form x y = y p ( x , y ) xy = yp(x,y) , where every term of the polynomial p p has degree greater than one. These varieties are interesting because they have definable principal congruences and are residually small. Let V \mathcal {V} be such a variety. The subdirectly irreducible rings in V \mathcal {V} are shown to be finite local rings and are completely described. This results in structure theorems for the rings in V \mathcal {V} and new examples of noncommutative rings in varieties with definable principal congruences. A standard form for the defining identity is given and is used to show that V \mathcal {V} also satisfies an identity of the form x y = q ( x , y ) x xy = q(x,y)x . Analogous results are shown to hold for varieties satisfying x y = q ( x , y ) x xy = q(x,y)x .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Definable normal closures in locally finite varieties of groups;Baker, Kirby A.;Houston J. Math.,1981

2. The number of subdirectly irreducible algebras in a variety;Baldwin, John T.;Algebra Universalis,1975

3. Definable principal congruences in varieties of groups and rings;Burris, Stanley;Algebra Universalis,1979

4. A correction to: “Definable principal congruences in varieties of groups and rings” [Algebra Universalis 9 (1979), no. 2, 152–164; MR 80c:08004];Burris, S.;Algebra Universalis,1981

5. Separable algebras over commutative rings;Janusz, G. J.;Trans. Amer. Math. Soc.,1966

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Definable principal congruences and solvability;Annals of Pure and Applied Logic;2009-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3