On the singularities of the continuous Jacobi transform when 𝛼+𝛽=0

Author:

Zayed Ahmed I.

Abstract

Let α , β > 1 \alpha ,\beta > - 1 and P λ ( α , β ) ( x ) = ( 1 x ) α ( 1 + x ) β P λ ( α , β ) ( x ) \mathcal {P}_\lambda ^{(\alpha ,\beta )}(x) = {(1 - x)^\alpha }{(1 + x)^\beta }P_\lambda ^{(\alpha ,\beta )}(x) , where P λ ( α , β ) ( x ) P_\lambda ^{(\alpha ,\beta )}(x) is the Jacobi function of the first kind, λ ( α + β + 1 ) / 2 \lambda \geq - (\alpha + \beta + 1)/2 , and 1 > x 1 - 1 > x \leq 1 . Let \[ F ( α , β ) ( λ ) = 1 2 α + β + 1 f ( x ) , P λ ( α , β ) ( x ) = 1 2 α + β + 1 1 1 f ( x ) P λ ( α , β ) ( x ) d x {F^{(\alpha ,\beta )}}(\lambda ) = \frac {1} {{{2^{\alpha + \beta + 1}}}}\left \langle {f(x),\mathcal {P}_\lambda ^{(\alpha ,\beta )}(x)} \right \rangle = \frac {1} {{{2^{\alpha + \beta + 1}}}}\int _{ - 1}^1 {f(x)\mathcal {P}_\lambda ^{(\alpha ,\beta )}(x)dx} \] whenever the integral exists. It is known that for α + β = 0 \alpha + \beta = 0 , we have (*) \[ f ( x ) = lim n 4 0 n F ( α , β ) ( λ 1 2 ) P λ 1 / 2 ( β , α ) ( x ) λ × sin π λ Γ 2 ( λ + 1 / 2 ) Γ ( λ + α + 1 / 2 ) Γ ( λ + β + 1 / 2 ) d λ f(x) = \lim \limits _{n \to \infty } 4\int _0^n {{F^{(\alpha ,\beta )}}\left ( {\lambda - \frac {1}{2}} \right )} P_{\lambda - 1/2}^{(\beta ,\alpha )}( - x)\lambda \times \sin \pi \lambda \frac {{{\Gamma ^2}(\lambda + 1/2)}}{{\Gamma (\lambda + \alpha + 1/2)\Gamma (\lambda + \beta + 1/2)}}d\lambda \] almost everywhere in [ 1 , 1 ] [-1,1] . In this paper, we devise a technique to continue f ( x ) f(x) analytically to the complex z z -plane and locate the singularities of f ( z ) f(z) by relating them to the singularities of \[ g ( t ) = 0 e λ t F ( α , β ) ( λ ) d λ Γ ( λ + α + 1 ) . g(t) = \int _0^\infty {{e^{ - \lambda t}}{F^{(\alpha ,\beta )}}(\lambda )} \frac {{d\lambda }}{{\Gamma (\lambda + \alpha + 1)}}. \] However, this will be done in the more general case where the limit in (*) exists in the sense of Schwartz distributions and defines a generalized function f ( x ) f(x) . In this case, we pass from f ( x ) f(x) to its analytic representation \[ f ^ ( z ) = 1 2 π i f ( x ) , 1 x z , z supp f , \hat f(z) = \frac {1} {{2\pi i}}\left \langle {f(x),\frac {1} {{x - z}}} \right \rangle ,\quad z \notin \operatorname {supp} f, \] and then relate the singularities of f ^ ( z ) \hat f(z) to those of g ( t ) g(t) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. The continuous Jacobi transform;Deeba, E. Y.;Internat. J. Math. Math. Sci.,1983

2. Integral operator methods in bi-axially symmetric potential theory;Gilbert, R. P.;Contributions to Differential Equations,1963

3. J. Levin, Distribution of zeros of entire functions, Amer. Math. Soc. Transl. 5 (1972).

4. On the singularities of Legendre expansions;Nehari, Zeev;J. Rational Mech. Anal.,1956

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3