The semisimplicity problem for 𝑝-adic group algebras

Author:

Hare Kathryn E.,Shirvani Maziar

Abstract

For a prime p p let Ω = Ω p \Omega = {\Omega _p} denote the completion of the algebraic closure of the field of p p -adic numbers with p p -adic valuation | | \left | \right | . Given a group G G consider the ring of formal sums \[ l 1 ( Ω , G ) = { x G α x x : α x Ω , | α x | 0 } . {l_1}\left ( {\Omega ,G} \right ) = \left \{ {\sum \limits _{x \in G} {{\alpha _x}x:{\alpha _x} \in \Omega ,\left | {{\alpha _x}} \right |} \to 0} \right \}. \] Motivated by the study of group rings and the complex Banach algebras l 1 ( C , G ) {l_1}\left ( {{\mathbf {C}},G} \right ) , we consider the problem of when this ring is semisimple (semiprimitive). Our main result is that for an Abelian group G , l 1 ( Ω , G ) G,{l_1}\left ( {\Omega ,G} \right ) is semisimple if and only if G G does not contain a C p {C_p}\infty subgroup. We also prove that l 1 ( Ω , G ) {l_1}\left ( {\Omega ,G} \right ) is semisimple if G G is a nilpotent p p’ -group, an ordered group, or a torsion-free solvable group. We use a mixture of algebraic and analytic methods.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Sur la non-injectivité de la transformation de Fourier 𝑝-adique relative à 𝑍_{𝑝};Amice, Yvette;C. R. Acad. Sci. Paris S\'{e}r. A,1974

2. Regional Conference Series in Mathematics, No. 2;Baumslag, Gilbert,1971

3. Algèbres de Banach ultramétriques et algèbres de Krasner-Tate;Escassut, Alain,1973

4. Algèbres 𝐿¹ 𝑝-adiques;Fresnel, Jean;Bull. Soc. Math. France,1978

5. \bysame, Sur la transformation de Fourier 𝑝-adique, C.R. Acad. Sci. Paris 277 (1973), 711-714.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3