Cell-like maps that are shape equivalences

Author:

Choi Jung-In K.

Abstract

Let f : X X f:X’ \to X be a cell-like map between metric spaces and set N f = { x X : f 1 ( x ) point}  {N_f} = \{ x \in X:{f^{ - 1}}(x) \ne {\text {point\} }} . Even if N f n = 1 B n {N_f} \subset \bigcup \nolimits _{n = 1}^\infty {{B_n}} , where each B n {B_n} is closed and each f | f 1 ( B n ) : f 1 ( B n ) B n f|{f^{ - 1}}({B_n}):{f^{ - 1}}({B_n}) \to {B_n} is hereditary shape equivalence, f f may not be a hereditary shape equivalence. Conditions are placed on the B n {B_n} ’s to assure that f f is a hereditary shape equivalence. For example, if N f n = 1 B n {N_f} \subset \bigcup \nolimits _{n = 1}^\infty {{B_n}} , where B n {B_n} is closed for each n = 1 , 2 , , f | f 1 ( B n ) : f 1 ( B n ) B n n = 1,2, \ldots ,f|{f^{ - 1}}({B_n}):{f^{ - 1}}({B_n}) \to {B_n} is a hereditary shape equivalence, and B n {B_n} has arbitrary small neighborhoods whose boundaries miss i = 1 B i \bigcup \nolimits _{i = 1}^\infty {{B_i}} then f f is a hereditary shape equivalence. An immediate consequence is that if { B n } n = 1 \{ {B_n}\} _{n = 1}^\infty is a pairwise disjoint null-sequence and each f | f 1 ( B n ) f|{f^{ - 1}}({B_n}) is a hereditary shape equivalence, then f f is a hereditary shape equivalence. Previously G. Kozlowski showed that if { f 1 ( B n ) } n = 1 \{ {f^{ - 1}}({B_n})\} _{n = 1}^\infty is a pairwise disjoint null-sequence and each f | f 1 ( B n ) f|{f^{ - 1}}({B_n}) is a hereditary shape equivalence, then f f is a hereditary shape equivalence, which can be obtained as an immediate corollary of one of our results.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. The role of countable dimensionality in the theory of cell-like relations;Ancel, Fredric D.;Trans. Amer. Math. Soc.,1985

2. Examples of cell-like maps that are not shape equivalences;Daverman, R. J.;Michigan Math. J.,1983

3. Mappings between 𝐴𝑁𝑅s that are fine homotopy equivalences;Haver, William E.;Pacific J. Math.,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3