Projectively bounded Fréchet measures

Author:

Blei Ron

Abstract

A scalar valued set function on a Cartesian product of σ \sigma -algebras is a Fréchet measure if it is a scalar measure independently in each coordinate. A basic question is considered: is it possible to construct products of Fréchet measures that are analogous to product measures in the classical theory? A Fréchet measure is said to be projectively bounded if it satisfies a Grothendieck type inequality. It is shown that feasibility of products of Fréchet measures is linked to the projective boundedness property. All Fréchet measures in a two dimensional framework are projectively bounded, while there exist Fréchet measures in dimensions greater than two that are projectively unbounded. A basic problem is considered: when is a Fréchet measure projectively bounded? Some characterizations are stated. Applications to harmonic and stochastic analysis are given.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Projective boundedness and convolution of Fréchet measures;Proceedings of the American Mathematical Society;2000-06-07

2. The Wigner Distribution of Gaussian Weakly Harmonizable Stochastic Processes;Pseudo-Differential Operators and Related Topics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3