The structure of Johns rings

Author:

Faith Carl,Menal Pere

Abstract

In this paper we continue our study of right Johns rings, that is, right Noetherian rings in which every right ideal is an annihilator. Specifically we study strongly right Johns rings, or rings such that every n × n n \times n matrix ring R n {R_n} is right Johns. The main theorem (Theorem 1.1) characterizes them as the left FP {\text {FP}} -injective right Noetherian rings, a result that shows that not all Johns rings are strong. (This first was observed by Rutter for Artinian Johns rings; see Theorem 1.2.) Another characterization is that all finitely generated right R R -modules are Noetherian and torsionless, that is, embedded in a product of copies of R R . A corollary to this is that a strongly right Johns ring R R is preserved by any group ring R G RG of a finite group (Theorem 2.1). A strongly right Johns ring is right F P F FPF (Theorem 4.2).

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Faith, Carl,1981

2. Grundlehren der Mathematischen Wissenschaften, No. 191;Faith, Carl,1976

3. \bysame, Embedding modules in projectives, Advances in Non-Commutative Ring Theory, Lecture Notes in Math., vol. 951, Springer-Verlag, New York, 1982, pp. 21-39.

4. Embedding torsionless modules in projectives;Faith, Carl;Publ. Mat.,1990

5. Self-injective rings;Faith, Carl;Proc. Amer. Math. Soc.,1979

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When do modules mimic arbitrary sets?;Communications in Algebra;2024-05-26

2. Johns modules and quasi-Johns modules;Hacettepe Journal of Mathematics and Statistics;2022-12-31

3. A Note on the Faith–Menal Conjecture;Communications in Algebra;2015-10-19

4. A NOTE ON ℵ0-INJECTIVE RINGS;Journal of Algebra and Its Applications;2011-06

5. On a Generalization of Injective Rings;Communications in Algebra;2003-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3