Simplified 𝐿^{∞} estimates for difference schemes for partial differential equations

Author:

Layton William J.

Abstract

L {L^\infty } estimates for one-step difference approximations to the Cauchy problem for u / t = u / x \partial u/\partial t = \partial u/\partial x are proven by means of simple L 2 {L^2} -techniques. It is shown that, provided the difference approximation is stable in L 2 {L^2} (and not necessarily L {L^\infty } ) and accurate of order r r , the error in approximating smooth solutions is O ( h r ) O({h^r}) . This has been proven by Hedstrom and Thomée using Fourier multipliers and Besov spaces. The present paper shows how convergence rates in L {L^\infty } can be recovered using simple techniques (such as the Fourier inversion formula). The methods of Hedstrom and Thomée give sharper results when the difference scheme diverges. The present paper exploits the fact that estimates between L {L^\infty } and L 1 {L^1} are frequently easier to obtain than between L {L^\infty } and L {L^\infty } .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference8 articles.

1. Pure and Applied Mathematics, Vol. 65;Adams, Robert A.,1975

2. Lecture Notes in Mathematics, Vol. 434;Brenner, Philip,1975

3. The rate of convergence of some difference schemes;Hedstrom, G. W.;SIAM J. Numer. Anal.,1968

4. Die Grundlehren der mathematischen Wissenschaften, Band 205;Nikol′skiĭ, S. M.,1975

5. A study of stability in 𝐶 of explicit difference schemes with constant real coefficients which are stable in 𝑙₂;Serdjukova, S. I.;\v{Z}. Vy\v{c}isl. Mat i Mat. Fiz.,1963

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3