Persistent manifolds are normally hyperbolic

Author:

Mañé Ricardo

Abstract

Let M be a smooth manifold, f : M a C 1 f:\,M\,\mid \text {a}\,{{C}^{1}} diffeomorphism and V M a C 1 V \subset M\,{\text {a}}\,{{\text {C}}^1} compact submanifold without boundary invariant under f (i.e. f ( V ) = V f\left ( V \right )\, = \,V ). We say that V is a persistent manifold for f if there exists a compact neighborhood U of V such that n z f n ( U ) = V { \cap _{n\, \in \,{\textbf {z}}}}\,{f^n}\left ( U \right )\, = \,V , and for all diffeomorphisms g : M g:\,M\,\mid near to f in the C 1 {C^1} topology the set V g = n z g n ( U ) {V_g}\, = \,{ \cap _{n\, \in \,{\textbf {z}}}}{g^n}\left ( U \right ) is a C 1 {C^1} submanifold without boundary C 1 {C^1} near to V. Several authors studied sufficient conditions for persistence of invariant manifolds. Hirsch, Pugh and Shub proved that normally hyperbolic manifolds are persistent, where normally hyperbolic means that there exist a Tf-invariant splitting T M / V = N s V N u V T V TM/V\, = \,{N^s}V\, \oplus \,{N^u}V\, \oplus \,TV and constants K > 0 K\, > \,0 , 0 > λ > 1 0\, > \,\lambda \, > \,1 such that: \[ ( T f ) n / N x s V K λ n , ( T f ) n / N x u V K λ n , ( T f ) n / N x s V ( T f ) n / T f n ( x ) V K λ n \begin {gathered} \left \| {{{\left ( {Tf} \right )}^n}/N_x^sV} \right \|\, \leq \,K{\lambda ^n},\,\left \| {{{\left ( {Tf} \right )}^{ - n}}/N_x^uV} \right \|\, \leq \,K{\lambda ^n}, \left \| {{{\left ( {Tf} \right )}^n}/N_x^sV} \right \|\, \cdot \,\left \| {{{\left ( {Tf} \right )}^{ - n}}/{T_{{f^n}\left ( x \right )}}V} \right \|\, \leq \,K{\lambda ^n} \end {gathered} \] for all n > 0 n\, > \,0 , x V x\, \in \,V . In this paper we prove the converse result, namely that persistent manifolds are normally hyperbolic.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attracting invariant tori and analytic conjugacies;Journal of Differential Equations;2024-07

2. Attractive Invariant Circles à la Chenciner;Regular and Chaotic Dynamics;2023-07-31

3. Partial barriers to chaotic transport in 4D symplectic maps;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-01-01

4. Attracting Invariant Tori and Analytic Conjugacies;2023

5. Self-induced synchronization by large delay;Journal of Differential Equations;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3