Let
p
p
be a fixed odd prime. In this paper we prove an exponent conjecture of Bousfield, namely that the
p
p
-exponent of the spectrum
Φ
S
U
(
n
)
\Phi SU(n)
is
(
n
−
1
)
+
ν
p
(
(
n
−
1
)
!
)
(n-1) + \nu _p((n-1)!)
for
n
≥
2
n \geq 2
. It follows from this result that the
p
p
-exponent of
Ω
q
S
U
(
n
)
⟨
i
⟩
\Omega ^{q} SU(n) \langle i \rangle
is at least
(
n
−
1
)
+
ν
p
(
(
n
−
1
)
!
)
(n-1) + \nu _p((n-1)!)
for
n
≥
2
n \geq 2
and
i
,
q
≥
0
i,q \geq 0
, where
S
U
(
n
)
⟨
i
⟩
SU(n) \langle i \rangle
denotes the
i
i
-connected cover of
S
U
(
n
)
SU(n)
.