Hochschild (co-)homology of schemes with tilting object

Author:

Buchweitz Ragnar-Olaf,Hille Lutz

Abstract

Given a k k –scheme X X that admits a tilting object T T , we prove that the Hochschild (co-)homology of X X is isomorphic to that of A = End X ( T ) A=\operatorname {End}_{X}(T) . We treat more generally the relative case when X X is flat over an affine scheme Y = Spec R Y=\operatorname {Spec} R , and the tilting object satisfies an appropriate Tor-independence condition over R R . Among applications, Hochschild homology of X X over Y Y is seen to vanish in negative degrees, smoothness of X X over Y Y is shown to be equivalent to that of A A over R R , and for X X a smooth projective scheme we obtain that Hochschild homology is concentrated in degree zero. Using the Hodge decomposition of Hochschild homology in characteristic zero, for X X smooth over Y Y the Hodge groups H q ( X , Ω X / Y p ) H^{q}(X,\Omega _{X/Y}^{p}) vanish for p > q p > q , while in the absolute case they even vanish for p q p\neq q .

We illustrate the results for crepant resolutions of quotient singularities, in particular for the total space of the canonical bundle on projective space.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference45 articles.

1. Cambridge Studies in Advanced Mathematics;Auslander, Maurice,1997

2. Tilting sheaves in representation theory of algebras;Baer, Dagmar;Manuscripta Math.,1988

3. (Semi)simple exercises in quantum cohomology;Bayer, Arend,2004

4. Coherent sheaves on 𝑃ⁿ and problems in linear algebra;Beĭlinson, A. A.;Funktsional. Anal. i Prilozhen.,1978

5. Universal derivations and universal ring constructions;Bergman, George M.;Pacific J. Math.,1978

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deformations of algebras defined by tilting bundles;Journal of Algebra;2018-11

2. Quiver GIT for varieties with tilting bundles;manuscripta mathematica;2017-01-24

3. Noncommutative deformations and flops;Duke Mathematical Journal;2016-06-01

4. Frobenius categories, Gorenstein algebras and rational surface singularities;Compositio Mathematica;2014-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3