Intrinsic volumes of random polytopes with vertices on the boundary of a convex body

Author:

Böröczky Károly,Fodor Ferenc,Hug Daniel

Abstract

Let K K be a convex body in R d \mathbb {R}^d , let j { 1 , , d 1 } j\in \{1, \ldots , d-1\} , and let ϱ \varrho be a positive and continuous probability density function with respect to the ( d 1 ) (d-1) -dimensional Hausdorff measure on the boundary K \partial K of K K . Denote by K n K_n the convex hull of n n points chosen randomly and independently from K \partial K according to the probability distribution determined by ϱ \varrho . For the case when K \partial K is a C 2 C^2 submanifold of R d \mathbb {R}^d with everywhere positive Gauss curvature, M. Reitzner proved an asymptotic formula for the expectation of the difference of the j j th intrinsic volumes of K K and K n K_n , as n n\to \infty . In this article, we extend this result to the case when the only condition on K K is that a ball rolls freely in K K .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. Athena Series: Selected Topics in Mathematics;Artin, Emil,1964

2. Convex bodies, economic cap coverings, random polytopes;Bárány, I.;Mathematika,1988

3. Expectation of intrinsic volumes of random polytopes;Böröczky, Károly J., Jr.;Period. Math. Hungar.,2008

4. The mean width of random polytopes circumscribed around a convex body;Böröczky, Károly J.;J. Lond. Math. Soc. (2),2010

5. Approximation of smooth convex bodies by random circumscribed polytopes;Böröczky, Károly, Jr.;Ann. Appl. Probab.,2004

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The K-Cell Under Increasing Intensities;Springer Monographs in Mathematics;2024

2. Random inscribed polytopes in projective geometries;Mathematische Annalen;2021-08-25

3. EXPECTED MEAN WIDTH OF THE RANDOMIZED INTEGER CONVEX HULL;Mathematika;2021-02-22

4. Intrinsic and Dual Volume Deviations of Convex Bodies and Polytopes;International Mathematics Research Notices;2019-12-12

5. General volumes in the Orlicz–Brunn–Minkowski theory and a related Minkowski problem II;Calculus of Variations and Partial Differential Equations;2019-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3