Meromorphic extensions from small families of circles and holomorphic extensions from spheres

Author:

Globevnik Josip

Abstract

Let B \mathbb {B} be the open unit ball in C 2 \mathbb {C}^2 and let a , b , c a, b, c be three points in C 2 \mathbb {C}^2 which do not lie in a complex line, such that the complex line through a , b a, b meets B \mathbb {B} and such that if one of the points a , b a, b is in B \mathbb {B} and the other in C 2 B ¯ \mathbb {C}^2\setminus \overline {\mathbb {B}} then a | b 1 \langle a|b\rangle \not = 1 and such that at least one of the numbers a | c ,   b | c \langle a|c\rangle ,\ \langle b|c\rangle is different from 1 1 . We prove that if a continuous function f f on b B b\mathbb {B} extends holomorphically into B \mathbb {B} along each complex line which meets { a , b , c } \{ a, b, c\} , then f f extends holomorphically through B \mathbb {B} . This generalizes the recent result of L. Baracco who proved such a result in the case when the points a , b , c a, b, c are contained in B \mathbb {B} . The proof is quite different from the one of Baracco and uses the following one-variable result, which we also prove in the paper: Let Δ \Delta be the open unit disc in C \mathbb {C} . Given α Δ \alpha \in \Delta let C α \mathcal {C}_\alpha be the family of all circles in Δ \Delta obtained as the images of circles centered at the origin under an automorphism of Δ \Delta that maps 0 0 to α \alpha . Given α , β Δ ,   α β \alpha , \beta \in \Delta ,\ \alpha \not = \beta , and n N n\in \mathbb {N} , a continuous function f f on Δ ¯ \overline {\Delta } extends meromorphically from every circle Γ C α C β \Gamma \in \mathcal {C}_\alpha \cup \mathcal {C}_\beta through the disc bounded by Γ \Gamma with the only pole at the center of Γ \Gamma of degree not exceeding n n if and only if f f is of the form f ( z ) = a 0 ( z ) + a 1 ( z ) z ¯ + + a n ( z ) z ¯ n ( z Δ ) f(z) = a_0(z)+a_1(z)\overline z +\cdots +a_n(z)\overline z^n (z\in \Delta ) where the functions a j , 0 j n a_j, 0\leq j\leq n , are holomorphic on Δ \Delta .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. [A1] M. L. Agranovsky: Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of 𝐶ⁿ, J. d’Analyse Math. 113 (2011) 293-304.

2. [A2] M. L. Agranovsky: Characterization of polyanalytic functions by meromorphic extensions into chains of circles, J. d’Analyse Math, 113 (2011) 305-329.

3. [A3] M. L. Agranovsky: Boundary Forelli theorem for the sphere in ℂⁿ and 𝕟+1 bundles of complex lines, http:/arxiv.org/abs/1003.6125.

4. Analyticity on circles for rational and real-analytic functions of two real variables;Agranovsky, Mark L.;J. Anal. Math.,2003

5. Maximality of invariant algebras of functions;Agranovskiĭ, M. L.;Sibirsk. Mat. \v{Z}.,1971

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Testing families of analytic discs in the unit ball of ℂ2;Journal d'Analyse Mathématique;2023-03-20

2. On the Multidimensional Boundary Analogue of the Morera Theorem;Journal of Siberian Federal University. Mathematics & Physics;2022-01

3. Functions with the One-dimensional Holomorphic Extension Property;Journal of Siberian Federal University. Mathematics & Physics;2019-07

4. Orthogonal testing families and holomorphic extension from the sphere to the ball;Mathematische Zeitschrift;2019-01-18

5. On functions with one‐dimensional holomorphic extension property in circular domains;Mathematische Nachrichten;2019-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3