Upper bounds for the number of number fields with alternating Galois group

Author:

Larson Eric,Rolen Larry

Abstract

Let N ( n , A n , X ) N(n, A_n, X) be the number of number fields of degree n n whose Galois closure has Galois group A n A_n and whose discriminant is bounded by X X . By a conjecture of Malle, we expect that N ( n , A n , X ) C n X 1 2 ( log X ) b n N(n, A_n, X)\sim C_n\cdot X^{\frac {1}{2}} \cdot (\log X)^{b_n} for constants b n b_n and C n C_n . For 6 n 84393 6 \leq n \leq 84393 , the best known upper bound is N ( n , A n , X ) X n + 2 4 N(n, A_n, X) \ll X^{\frac {n + 2}{4}} , by Schmidt’s theorem, which implies there are X n + 2 4 \ll X^{\frac {n + 2}{4}} number fields of degree n n . (For n > 84393 n > 84393 , there are better bounds due to Ellenberg and Venkatesh.) We show, using the important work of Pila on counting integral points on curves, that N ( n , A n , X ) X n 2 2 4 ( n 1 ) + ϵ N(n, A_n, X) \ll X^{\frac {n^2 - 2}{4(n - 1)}+\epsilon } , thereby improving the best previous exponent by approximately 1 4 \frac {1}{4} for 6 n 84393 6 \leq n \leq 84393 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. The density of discriminants of quartic rings and fields;Bhargava, Manjul;Ann. of Math. (2),2005

2. The density of discriminants of quintic rings and fields;Bhargava, Manjul;Ann. of Math. (2),2010

3. A survey of discriminant counting;Cohen, Henri,2002

4. On the density of discriminants of cubic fields. II;Davenport, H.;Proc. Roy. Soc. London Ser. A,1971

5. The number of extensions of a number field with fixed degree and bounded discriminant;Ellenberg, Jordan S.;Ann. of Math. (2),2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discriminants of fields generated by polynomials of given height;Israel Journal of Mathematics;2023-10-09

2. Improved lower bounds for the number of fields with alternating Galois group;Bulletin of the London Mathematical Society;2021-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3