The structure of a nonlinear elliptic operator

Author:

Church P. T.,Dancer E. N.,Timourian J. G.

Abstract

Consider the nonlinear Dirichlet problem ( 1 ) Δ u λ u + u 3 = g (1) - \Delta u - \lambda u + {u^3} = g , for u : Ω R u:\Omega \to \mathbb {R} , u | Ω = 0 u|\partial \Omega = 0 , and Ω R n \Omega \subset {\mathbb {R}^n} connected and bounded, and let λ i {\lambda _i} be the i i th eigenvalue of Δ u - \Delta u on Ω \Omega with u | Ω = 0 u|\partial \Omega = 0 , ( i = 1 , 2 , ) (i = 1,2, \ldots ) . Define a map A λ : H H {A_\lambda }:H \to H\prime by A λ ( u ) = Δ u λ u + u 3 {A_\lambda }(u) = - \Delta u - \lambda u + {u^3} , for either the Sobolev space W 0 1 , 2 ( Ω ) = H = H W_0^{1,2}(\Omega ) = H = H\prime (if n 4 ) n \leq 4) or the Hölder spaces C 0 2 , α ( Ω ¯ ) = H C_0^{2,\alpha }(\bar \Omega ) = H and C 0 , α ( Ω ¯ ) = H {C^{0,\alpha }}(\bar \Omega ) = H\prime (if Ω \partial \Omega is C 2 , α {C^{2,\alpha }} ), and define A : H × R H × R A:H \times \mathbb {R} \to H\prime \times \mathbb {R} by A ( u , λ ) = ( A λ ( u ) , λ ) A(u,\lambda ) = ({A_\lambda }(u),\lambda ) . Let G : R 2 × E R 2 × E G:{\mathbb {R}^2} \times E \to {\mathbb {R}^2} \times E be the global cusp map given by G ( s , t , v ) = ( s 3 t s , t , v ) G(s,t,v) = ({s^3} - ts,t,v) , and let F : R × E R × E F:\mathbb {R} \times E \to \mathbb {R} \times E be the global fold map given by F ( t , v ) = ( t 2 , v ) F(t,v) = ({t^2},v) , where E E is any Fréchet space. Theorem 1. If H = H = W 0 1 , 2 ( Ω ) H = H\prime = W_0^{1,2}(\Omega ) , assume in addition that n 3 n \leqslant 3 . There exit ε > 0 \varepsilon > 0 and homeomorphisms α \alpha and β \beta such that the following diagram commutes: \[ H × ( , λ 1 + ε ) a m p ; α a m p ; R 2 × E A a m p ; a m p ; G H × ( , λ 1 + ε ) a m p ; β a m p ; R 2 × E \begin {array}{*{20}{c}} {H \times ( - \infty ,{\lambda _1} + \varepsilon )} & {\xrightarrow [ \approx ]{\alpha }} & {{\mathbb {R}^2} \times E} \\ {A \downarrow } & {} & { \downarrow G} \\ {H’ \times ( - \infty ,{\lambda _1} + \varepsilon )} & {\xrightarrow [ \approx ]{\beta }} & {{\mathbb {R}^2} \times E} \\ \end {array} \] The analog for A λ {A_\lambda } with λ 1 > λ > λ 1 + ε {\lambda _1} > \lambda > {\lambda _1} + \varepsilon is also given. In a very strong sense this theorem is a perturbation result for the problem (1): As g g (and λ \lambda ) are perturbed, it shows how the number of solutions u u of (1) varies; in particular, that number is always 1 1 , 2 2 or 3 3 for λ > λ 1 + ε \lambda > {\lambda _1} + \varepsilon . A point u H u \in H is a fold point of A A if the germ of A A at u u is C 0 {C^0} equivalent to the germ of F F at ( 0 , 0 ) (0,0) (i.e. under homeomorphic coordinate changes in domain near u u and in range near A ( u ) A(u) , A A becomes F F ), and the singular set S A SA is the set of points at which A A fails to be a local diffeomorphism. For larger values of λ \lambda our information is limited: Theorem 2. Consider the Sobolev case with n 4 n \leqslant 4 and Ω C \partial \Omega \,{C^\infty } . For all λ R \lambda \in \mathbb {R} , (i) int ( S A ) = \operatorname {int} (SA) = \emptyset ; (ii) there is a dense subset Γ \Gamma in S A SA of fold points, and (iii) for λ > λ 2 \lambda > {\lambda _2} , S A SA [resp., for n 3 n \leqslant 3 and λ > λ 2 \lambda > {\lambda _2} , S A Γ SA - \Gamma ] is a real analytic submanifold of codimension 1 1 in H × R H \times \mathbb {R} [resp., S A SA ].

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference56 articles.

1. Pure and Applied Mathematics, Vol. 65;Adams, Robert A.,1975

2. On the inversion of some differentiable mappings with singularities between Banach spaces;Ambrosetti, A.;Ann. Mat. Pura Appl. (4),1972

3. Nonlinear Topics in the Mathematical Sciences;Berger, Melvyn S.,1990

4. Pure and Applied Mathematics;Berger, Melvin S.,1977

5. Complete integrability and perturbation of a nonlinear Dirichlet problem. I;Berger, M. S.;Indiana Univ. Math. J.,1979

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global solution curves in harmonic parameters, and multiplicity of solutions;Journal of Differential Equations;2021-09

2. Detection of high codimensional bifurcations in variational PDEs;Nonlinearity;2020-03-18

3. Fibers and global geometry of functions;Contributions to Nonlinear Elliptic Equations and Systems;2015

4. Beltrami Equation;Handbook of Complex Analysis;2005

5. Local Algebras of Differential Operators;Journal of Differential Equations;2002-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3