Steinberg symbols modulo the trace class, holonomy, and limit theorems for Toeplitz determinants

Author:

Carey Richard,Pincus Joel

Abstract

Suppose that ϕ = ψ z γ \phi =\psi z^\gamma where γ Z + \gamma \in Z_+ and ψ Lip β , 1 2 > β > 1 \psi \in \operatorname {Lip}_\beta ,\,{1\over 2}>\beta >1 , and the Toeplitz operator T ψ T_\psi is invertible. Let D n ( T ϕ ) D_n(T_\phi ) be the determinant of the Toeplitz matrix ( ( ϕ ^ i , j ) ) = ( ( ϕ ^ i j ) ) , 0 i , j n , ((\hat \phi _{i,j}))=((\hat \phi _{i-j})),\quad 0\leq i,j\leq n , where ϕ ^ k = 1 2 π 0 2 π ϕ ( θ ) e i k θ d θ \hat \phi _k={1\over 2\pi }\int _0^{2\pi } \phi (\theta )e^{-ik\theta }\, d\theta . Let P n P_n be the orthogonal projection onto ker S n + 1 = { 1 , e i θ , e 2 i θ , , e i n θ } , \ker {S^*}^{n+1}=\bigvee \{1,e^{i\theta }, e^{2i\theta },\ldots , e^{in\theta }\}, where S = T z S=T_z ; set Q n = 1 P n Q_n=1-P_n , let H ω H_\omega denote the Hankel operator associated to ω \omega , and set ω ~ ( t ) = ω ( 1 t ) \tilde \omega (t)=\omega ({1\over t}) for t T t\in \mathbb {T} . For the Wiener-Hopf factorization ψ = f g ¯ \psi =f\bar g where f , g f, g and 1 f , 1 g Lip β H ( T ) , 1 2 > β > 1 {1\over f },{1\over g}\in \operatorname {Lip}_\beta \cap H^\infty (\mathbb {T}), {1\over 2}>\beta >1 , put E ( ψ ) = exp k = 1 k ( log f ) k ( log g ¯ ) k E(\psi )=\exp \sum _{k=1}^\infty k(\log f)_k(\log \bar g)_{-k} , G ( ψ ) = exp ( log ψ ) 0 . G(\psi )=\exp (\log \psi )_0.

Theorem A. D n ( T ϕ ) = ( 1 ) ( n + 1 ) γ G ( ψ ) n + 1 E ( ψ ) G ( g ¯ f ) γ det ( ( T f g ¯ z n + 1 [ 1 H g ¯ f Q n γ H ( f g ¯ ) ~ ] 1 z α 1 , z τ 1 ) ) γ × γ [ 1 + O ( n 1 2 β ) ] . D_n(T_\phi )=(-1)^{(n+1)\gamma } G(\psi )^{n+1}E(\psi ) G({\bar g\over f})^\gamma \cdot \det \bigg ((T_{{f\over \bar g}z^{n+1}}\cdot [1-H_{\bar g\over f} Q_{n-\gamma } H_{({\frac {f}{\bar g}})^{\tilde {}}} ]^{-1}z^{\alpha -1},z^{\tau -1})\bigg )_{\gamma \times \gamma } \cdot [1+O(n^{1-2\beta })].

Let H 2 ( T ) = X Y H^2(\mathbb {T})= {\mathcal X}\dotplus {\mathcal Y} be a decomposition into T ϕ T ϕ 1 T_\phi T_{\phi ^{-1}} invariant subspaces, X = n = 1 ran ( T ϕ T ϕ 1 ) n {\mathcal X}= \bigcap _{n=1}^\infty \operatorname {ran} (T_\phi T_{\phi ^{-1}})^n and Y = n = 1 ker ( T ϕ T ϕ 1 ) n {\mathcal Y}=\bigcup _{n=1}^\infty \ker (T_\phi T_{\phi ^{-1}})^n , so that T ϕ T ϕ 1 T_\phi T_{\phi ^{-1}} restricted to X {\mathcal X} is invertible, Y {\mathcal Y} is finite dimensional, and T ϕ T ϕ 1 T_\phi T_{\phi ^{-1}} restricted to Y {\mathcal Y} is nilpotent. Let { w α } 1 γ \{w_\alpha \}_1^\gamma be the basis { T f z α } 0 γ 1 \{T_f z^\alpha \}_0^{\gamma -1} for the null space of T ϕ T ϕ 1 T_\phi T_{\phi ^{-1}} , and let u α u_\alpha be the top vector in a Jordan root vector chain of length m α + 1 m_\alpha +1 lying over ( 1 ) m α w α (-1)^{m_\alpha }w_\alpha , i.e., ( T ϕ T ϕ 1 ) m α u α = ( 1 ) m α w α (T_\phi T_{\phi ^{-1}})^{m_\alpha }u_\alpha =(-1)^{m_\alpha }w_\alpha where m α = max { m Z + : x so that ( T ϕ T ϕ 1 ) m x = w α } 1 m_\alpha =\max \{m\in Z_+:\exists x\,\text {so that} (T_\phi T_{\phi ^{-1}})^mx=w_\alpha \}^{-1} .

Theorem B. E ( ψ ) G ( g ¯ f ) γ = E( \psi ) G({\bar g\over f})^\gamma = λ σ ( T ϕ T ϕ 1 ) { 0 } λ det ( u α , T 1 g z τ 1 ) {\prod _{\lambda \in \sigma (T_{\phi } T_{\phi ^{-1}})\setminus \{0\}}\,\lambda }\over \det ( u_\alpha ,T_{1\over g}z^{\tau -1}) = ( g ¯ f × g ¯ f z γ ) ( T ) =\left (\bar g\cup f\times {\bar g\over f}\cup z^\gamma \right )(\mathbb {T}) , the holonomy of a Deligne bundle with connection defined by the factorization ϕ = f g ¯ z γ \phi = f\bar gz^\gamma .

Note that the generalizations of the Szegö limit theorem for D n ( T ϕ ) D_n(T_\phi ) which have appeared in the literature with 1 1 instead of [ 1 H g ¯ f Q n γ H ( f g ¯ ) ~ ] 1 [1-H_{\bar g\over f} Q_{n-\gamma } H_{({f\over \bar g})^{\tilde {}}}]^{-1} have the defect that the limit of D n ( T ϕ ) ( 1 ) ( n + 1 ) γ G ( ψ ) n + 1 det ( T f g ¯ z n + 1 z α 1 , z τ 1 ) {D_n(T_\phi )\over (-1)^{(n+1)\gamma } G(\psi )^{n+1} \det (T_{{f\over \bar g}z^{n+1}}z^{\alpha -1},z^{\tau -1})} does not exist in general. An example is given with D n ( T ϕ ) 0 D_n(T_\phi )\neq 0 yet D γ 1 ( T f g ¯ z n + 1 ) = 0 D_{\gamma -1}(T_{{f\over \bar g}z^{n+1}})=0 for infinitely many n n .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference32 articles.

1. Commutators in ideals of trace class operators;Anderson, Joel;Indiana Univ. Math. J.,1986

2. Commutators in ideals of trace class operators;Anderson, Joel;Indiana Univ. Math. J.,1986

3. Asymptotic formulas for Toeplitz determinants;Basor, Estelle;Trans. Amer. Math. Soc.,1978

4. A new proof of the Szegő limit theorem and new results for Toeplitz operators with discontinuous symbol;Basor, E.;J. Operator Theory,1980

5. A convergence equivalence related to polynomials orthogonal on the unit circle;Baxter, Glen;Trans. Amer. Math. Soc.,1961

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Canonical holomorphic sections of determinant line bundles;Journal für die reine und angewandte Mathematik (Crelles Journal);2019-01-01

2. Borodin–Okounkov and Szegő for Toeplitz Operators on Model Spaces;Integral Equations and Operator Theory;2014-01-07

3. A calculation of the multiplicative character;Journal of Noncommutative Geometry;2011

4. Comparison of secondary invariants of algebraic K-theory;Journal of K-Theory;2010-07-21

5. Asymptotics of block Toeplitz determinants generated by factorable matrix functions with equal partial indices;Mathematische Nachrichten;2007-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3