Small rational model of subspace complement

Author:

Yuzvinsky Sergey

Abstract

This paper concerns the rational cohomology ring of the complement M M of a complex subspace arrangement. We start with the De Concini-Procesi differential graded algebra that is a rational model for M M . Inside it we find a much smaller subalgebra D D quasi-isomorphic to the whole algebra. D D is described by defining a natural multiplication on a chain complex whose homology is the local homology of the intersection lattice L L whence connecting the De Concini-Procesi model with the Goresky-MacPherson formula for the additive structure of H ( M ) H^*(M) . The algebra D D has a natural integral version that is a good candidate for an integral model of M M . If the rational local homology of L L can be computed explicitly we obtain an explicit presentation of the ring H ( M , Q ) H^*(M,{\mathbf Q}) . For example, this is done for the cases where L L is a geometric lattice and where M M is a k k -equal manifold.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. The cohomology ring of the group of dyed braids;Arnol′d, V. I.;Mat. Zametki,1969

2. A homotopy complementation formula for partially ordered sets;Björner, Anders;European J. Combin.,1983

3. The homology of “𝑘-equal” manifolds and related partition lattices;Björner, Anders;Adv. Math.,1995

4. Sur les groupes de tresses [d’après V. I. Arnol′d];Brieskorn, Egbert,1973

5. Wonderful models of subspace arrangements;De Concini, C.;Selecta Math. (N.S.),1995

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. K-rings of wonderful varieties and matroids;Advances in Mathematics;2024-04

2. Formality and finiteness in rational homotopy theory;EMS Surveys in Mathematical Sciences;2023-11-15

3. Intersection Theory of Polymatroids;International Mathematics Research Notices;2023-09-06

4. On the topology of no k-equal spaces;Advances in Applied Mathematics;2023-08

5. Hodge Theory for Polymatroids;International Mathematics Research Notices;2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3