Let
Ω
n
{\Omega _n}
denote the set of all
n
×
n
n \times n
doubly stochastic matrices and let
J
n
=
[
1
/
n
]
n
×
n
{J_n} = {[1/n]_{n \times n}}
. For
A
∈
Ω
n
A \in {\Omega _n}
, if
f
A
(
t
)
=
per((1 - t)
J
n
+
t
A
)
{f_A}(t) = {\text {per((1 - t)}}{J_n} + tA)
is a nondecreasing function of
t
t
on
[
0
,
1
]
[0,1]
, we say that the monotonicity of permanent (abb. MP) holds for
A
A
. Friedland and Mine [3] proved MP for
(
n
J
n
−
I
n
)
/
(
n
−
1
)
(n{J_n} - {I_n})/(n - 1)
. In [6], Lih and Wang proposed a problem of determining whether MP holds for
J
n
1
⊗
⋯
⊗
J
n
k
,
n
i
>
0
{J_{{n_1}}} \otimes \cdots \otimes {J_{{n_k}}},{n_i} > 0
. In this note, we prove MP for
(
(
m
J
m
−
I
m
)
⊗
s
J
s
)
/
(
m
−
1
)
s
((m{J_m} - {I_m}) \otimes s{J_s})/(m - 1)s
, extending the result of Friedland and Mine, and give an affirmative answer to the Lih and Wang’s question.