Free products of inverse semigroups

Author:

Jones Peter R.

Abstract

A structure theorem is provided for the free product S inv T S\,{\operatorname {inv}}\,T of inverse semigroups S S and T T . Each element of S inv T S\,{\operatorname {inv}}\,T is uniquely expressible in the form ε ( A ) a \varepsilon (A)a , where A A is a certain finite set of “left reduced” words and either a = 1 a = 1 or a = a 1 a m a = {a_1} \cdots {a_m} is a “reduced” word with a a m 1 A aa_m^{ - 1} \in A . (The word a 1 a m {a_1} \cdots {a_m} in S sgp T S\,{\operatorname {sgp}}\,T is called reduced if no letter is idempotent, and left reduced if exactly a m {a_m} is idempotent; the notation ε ( A ) \varepsilon (A) stands for Π { a a 1 : a A } \Pi \{ a{a^{ - 1}}:\,a \in A\} .) Under a product remarkably similar to Scheiblich’s product for free inverse semigroups, the corresponding pairs ( A , a ) (A,\,a) form an inverse semigroup isomorphic with S inv T S\,{\operatorname {inv}}\,T . This description enables various properties of S inv T S\,{\operatorname {inv}}\,T to be determined. For example ( S inv T ) ( S T ) (S\:{\operatorname {inv}}\:T)\backslash (S \cup T) is always completely semisimple and each of its subgroups is isomorphic with a finite subgroup of S S or T T . If neither S S nor T T has a zero then ( S inv T ) (S\:{\operatorname {inv}}\:T) is fundamental, but in general fundamentality itself is not preserved.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. T. E. Hall, Inverse and regular semigroups and amalgamation: a brief survey, Proc. Sympos. Regular Semigroups, Northern Illinois Univ., DeKalb, Ill., 1979, pp. 49-79.

2. L. M. S. Monographs, No. 7;Howie, J. M.,1976

3. A basis theorem for free inverse semigroups;Jones, P. R.;J. Algebra,1977

4. Basis properties for inverse semigroups;Jones, P. R.;J. Algebra,1978

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some completely semisimple HNN-extensions of inverse semigroups;International Journal of Algebra and Computation;2019-10-18

2. Undecidability of the word problem for one-relator inverse monoids via right-angled Artin subgroups of one-relator groups;Inventiones mathematicae;2019-09-09

3. Amalgams of finite inverse semigroups;Journal of Algebra;2005-03

4. A class of inverse monoids acting on ordered forests;Journal of Algebra;2004-11

5. HNN EXTENSIONS OF SEMILATTICES;International Journal of Algebra and Computation;1999-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3